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Abstract: Climate change has severe impacts on natural resources, food production and consequently
on food security especially in developing countries. Likely accentuated by climate change, flooding
is one of the disasters that affects people and destroies agricultural land and products. At different
governance levels and scales, appropriate responses are needed. Cluster analysis using scaled
at-site characteristics was used to determine homogeneous rainfall regions. A methodology for
detecting change was applied to heavy daily rainfall of 34 stations across the Ouémé basin, Benin,
in order to assess potential change in its characteristics. The spatial variability of the detected
changes in return periods was analyzed using the kriging interpolation method. For this analysis,
up to 92 years (1921–2012) of rainfall data were used. Three homogeneous regions were found
by the cluster analysis. For all studied return periods, 82% of the stations showed statistically
significant change in daily precipitation, among which 57% exhibited a positive change and 43%
negative change. A positive change is associated with an increase in heavy rainfall over the area
of concern. An analysis of the interpolated change in heavy rainfall of different return periods
revealed an east-west gradient from negative to positive along the lower Ouémé basin (Region 2).
From the middle to the upper Ouémé (Region 1 and 3), a decreasing tendency of heavy rainfall is
dominant mainly for the non-homogeneous period. This result of the complex pattern of changes
could be veritable information for decision makers and consequently for development of appropriate
adaptation measures.
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1. Introduction

Heavy rainfall events are one of the natural hazards that lead to degradation processes like flash
floods or flooding as well as severe soil erosion, which can have regional devastating power and pose
a serious hazard to lives and property. From 1900 to 2006, floods in Africa killed nearly 20,000 people
and affected approximately 40 million more, and caused damage estimated at about US$4 billion [1].
In Benin, a number of extreme floods has occurred over the last 30 years and caused great economic
losses. Between 1980 and 2009, there have been 14 major floods affecting a total of 2.26 million
people [2]. According to the World Health Organization, an estimated 500 thousand people are at risk
of flooding [3]. The floods in 2008 and 2009 caused widespread damage and displacement, affecting
around 158 thousand and 120 thousand people, respectively [2]. Floods have become increasingly
frequent, leading to the question of whether this was due to the increasing frequency of heavy rainfall
or changes in land use patterns [4].
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It is widely accepted that with the increase of temperature, the water cycling process will
speed up, which in consequence will possibly result in the increase of precipitation amount and
intensity [5]. Worldwide, efforts have been made to study the change direction of extreme rainfall as,
for instance, in South America [6,7], in North America [8–10], in Europe [11–16], in Asia [5,17–20] and
in Australia [21], among other regions in the world. The results of the previously cited works indicate
that different directions of change in the frequency of heavy rainfall are possible.

Some areas of the globe have experienced an upward trend in extreme rainfall. For instance,
Karl and Knight examined using a variety of methods how precipitation has changed over the United
States and found that since 1910, precipitation has increased by about 10% [9]. They explained this
fact by an increase in the frequency of days with precipitation and by an increase in intensity of
the extremely heavy precipitation events. These results were confirmed by a study done by Kunkel
and Andsager, which was extended to Canada where an upward trend was observed in extreme
precipitation events [8]. All Europe-average indices of wet extremes increase in the 1946–1999 period,
although the spatial coherence of the trends is low [13]. The same upward trend was observed in South
America [6]. Significant increases in the intensity of extreme rainfall events between 1931–1960 and
1961–1990 are identified over about 70% of South Africa and the intensity of the 10-year high rainfall
events has increased by more than 10% over large areas of this country, except in parts of the northeast,
northwest and in the winter rainfall region of the southwest [22]. A combined work for Southern and
West Africa performed by New et al. shows and confirms that regionally averaged rainfall on extreme
precipitation days and maximum annual five-day and one-day rainfall amounts increase, but only the
trend for the latter is statistically significant [23].

While evidence of increasing trends is presented for many regions, statistically significant
decreasing trends in extreme rainfall events have also been found in other areas like the south of
Europe [11], Southeast Asia and parts of the central Pacific [24], and in northern Nigeria [25].

In other parts, like China [26], no statistically significant change in heavy rain intensity is found.
This is confirmed by the work of Wang et al. where little change is observed in various annual extreme
precipitation indices, but significant changes are observed in the precipitation processes on a monthly
basis, although the seasonal variations are not uniform even in a medium-sized basin such as the
Dongxiang River Basin [5].

Until now, little is known about extreme rainfall over Benin. Yabi and Afouda examined
recent years’ rainfall extremes and their socioeconomic and environmental impacts in Benin [27].
Their analysis showed strong incidence of extreme rainfall during the 1950s and 1960s, particularly
in the south, while the 1970s and 1980s recorded very dry years. Hountondji and Ozer studied
trends in extreme rainfall events in Benin for the period 1960–2000 using 12 rainfall indices [28].
They found that only the annual total precipitation, the annual total of wet days and the annual
maximum rainfall recorded during 30 days present a significant decreasing trend while the other
nine rainfall indicators appear to remain stable. Even though some efforts have been made to study
extreme rainfall across the country, no study, as far as we know, investigated change in extreme rainfall
over the country especially in the Ouémé basin by emphasizing on its frequency and its magnitude.
The main objective of this work is to improve understanding of the heavy rainfall characteristics as
key factor to support flood risk management in the Ouémé basin. This objective was split into three
specific objectives: (a) identification of homogeneous regions in the study area through cluster analysis;
(b) assessment of the frequency and/or intensity of extreme rainfall causing floods over the identified
regions; and (c) interpolation of the point scale results to analyze the spatial pattern of change in heavy
rainfall over the entire Ouémé basin. The Ouémé basin covers an area of about 50 thousand km² and
90% of this basin is located in Benin, West Africa.

2. Materials and Methods

The section presents the methodology used to analyze the heavy rainfall frequency and magnitude.
It includes the data sampling approach, the determination of homogeneous regions though K-means
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clustering and the Principal Component Analysis (PCA), the extreme value distribution used namely
the generalized Pareto distribution for quantile estimation, the kriging method for interpolation of the
changes in return periods of heavy rainfall and some statistical tests.

2.1. Data Sampling

The rainfall data used in this study were obtained from the Benin national weather service
(Direction Nationale de la Météorologie (DMN)) and cover the period of 1921 to 2012. Two approaches
were investigated. As a first approach, only the stations having continuous record from 1951 to
2010 were selected for analysis. This period is referred to as “homogeneous period”. The term
“homogeneous period“ implies that all the stations have the same data length (60 years) and are
within the same range 1951–2010. Only the data of 17 stations were within this range (see Figure 1).
This number of stations was not enough to perform statistical analysis and the regionalization (see
Section 3.1.) over the area of about 50 thousand km2 because using few stations could lead to high
variance in the estimation. The minimum sample size required to have accurate results from statistical
test is 30 [29]. Nevertheless, an analysis of the impact of the homogeneity in the study period on the
results has been performed in Section 3.3.

The second approach was to consider the available data length for each station. In doing so,
34 stations with data length varying from 44 to 92 years have been chosen. This is referred to
as “non-homogeneous period“ due to the difference in data lengths. The data records are within
1921–2012 (Figure 1).

Figure 1. Data range for each station. For the spatial distribution of the stations see Figure 2.

For the non-homogeneous period, the data of each station are split into two sub-samples of equal
length. Let Xj be the extreme values for one station such that Xj can be divided into two sub periods
Aj and Bj with j varying from 1 to 34 (the number of stations). If we take Xj = xi, xi+1, . . . , xN, where
i ě 1921 and N ď 2012, we can define:

Aj “ xi, xi+1, . . . , xm (1)
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Bj “ xm+1, xm+2, . . . , xN (2)

with m = (N + 1)/2 and this is rounded down to the nearest integer. This method was used for instance
by Frich et al. [30]. xi are extreme values corresponding to the year i.

2.2. Homogeneous Clusters

K-means clustering method combined with the principal component analysis (PCA) was used to
determine homogeneous regions and their corresponding stations. This approach was chosen due to
its successful application in other rainfall regionalization studies [31].

Different variables influence rainfall characteristics such as large-scale atmospheric variables
of air temperature, geopotential height, specific humidity, zonal and meridional wind velocities,
precipitable water and surface pressure in addition to latitude/longitude location, elevation and mean
annual rainfall (MAR), at-site Mean Annual Precipitation (MAP), station latitude/longitude location,
and elevation are proposed in the literature [31,32]. Due to the limited availability of some data,
four characteristics available for the study area were used, namely the geographical location (latitude,
longitude and altitude) and the MAP. Each variable was rescaled using the mean and the standard
deviation of the corresponding variable in order to avoid bias of variables with large absolute values:

Xi,j “

`

Yi,j ´Yj
˘

σj
f or 1 ď j ď n and 1 ď i ď N (3)

with Xi,j and Yi,j the scaled and non-scaled values of the i-th station and the j-th variable, respectively,
n is the total number of variables and N the number of stations or elements. The K-means algorithm
minimizes the function F defined below through an iterative procedure by moving the element from
one cluster to another [31]:

F “
K
ÿ

k“1

n
ÿ

j“1

Nk
ÿ

i“1

d2
´

Xk
i,j ´ Xk

j

¯

(4)

where the number of clusters K is set a priori; Nk is the number of feature vectors (stations) in cluster
k; Xk

i,j denotes the rescaled value of attribute (variable) in the feature vector i assigned to cluster k;

and Xk
j is the mean value of attribute j for cluster k, computed as:

Xk
j “

řNk
i“1 Xk

i,j

Nk
(5)

The number of clusters was determined using the Principal Component Analysis (PCA).
The procedure first requires computation of the principal components of the sites’ precipitation
records; i.e., the transformation of the sites’ precipitation records into a set of linearly uncorrelated
(orthogonal) vectors [33]. The loadings indicate the degree of variance of the sites’ precipitation
records that are described by each component; higher loadings are representative of greater variances.
The loadings are contoured and the contoured areas that exceed a predefined threshold value are
classified as coherent precipitation regions.

2.3. The Generalized Pareto Distribution

Two sampling methods are normally used in extreme events analysis: the annual maximal series
(AMS) and the peak over threshold (POT) methods. The AMS considers only the greatest events in
each year so the length of the AMS is equal to the number of record years. In contrast, the POT method
considers all data in the series that are above a given threshold. Nevertheless, the issue of threshold
choice implies a balance between bias and variance. A low threshold is likely to violate the asymptotic
basis of the model, leading to a bias; a high threshold will generate few excesses with which the model
can be estimated, leading to a high variance [34]. The standard practice is to adopt the threshold as
low as possible that the model provides a reasonable approximation. Two methods are available for
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this purpose [34]: one is an exploratory technique carried out prior to model estimation; the other is
an assessment of the stability of parameter estimates, based on the fitting of models across a range of
different thresholds. In this study, the Peak over Threshold (POT) was adopted as sampling method.
This choice was imposed by the data, which length were not sufficient to perform an analysis using
the annual maximal approach for some of the stations.

The probability distribution of a POT variable with random occurrence times belonging to the
Generalized Pareto family [35] with cumulative distribution F and quantile functions are:

$

&

%

F pX ď x| σ, kq “ 1´
“

1` k
` x

σ

˘‰
´1
k ; k ‰ 0 and 1` k

` x
σ

˘

ą 0

F pX ď x| σ, kq “ 1´ exp
`

´ x
σ

˘

k “ 0, σ ą 0
(6)

$

&

%

x1´p “ F´1 p1´ p; σ, kq “
`

σ
k
˘

pp´ k ´ 1q, 0 ă p ă 1, k ‰ 0

x1´p “ F´1 p1´ p; σ, kq “ σlog
´

1
p

¯

k “ 0
(7)

where p is the exceedance probability and (1´ p) is the non-exceedance probability derived from

the cumulative distribution function. σ, k are, respectively, scale and shape parameters distribution,
and x are the excesses over a selected threshold u [36]. The real quantile y1´p will be y1´p “ x1´p ` u.
If k > 0, then the Generalized Pareto Distribution (GPD) is heavy tailed. By convention, k = 0 refers to
the limiting case obtained as k Ñ 0 of the exponential distribution (i.e., an unbounded, thin tail).

Different thresholds were selected based on the minimum of the annual maximal sample of each
station and the GPD fitted at each time by looking for stability in the estimated parameter values as
suggested by Coles [34]. This condition is nearly satisfied for a daily rainfall amount of about 50 mm
for the different datasets (see Appendix Figures A1–A10). Therefore the threshold of 50 mm is adopted
for the following analysis.

The GPD was accordingly fitted to the data of each sub period Aj and Bj. The Maximum
Likelihood method was used for parameter estimation. For each station, the intensities (Ii“1:9) of 2-,
3-, 5-, 7-, 10-, 15-, 20-, 25-, and 30-year return periods were then obtained from the fitted distribution

for each Aj and Bj periods and the percentage change Dpjqi (j´th station and i´th return period) in the
intensities of the two periods was calculated using the following formula:

Dpjqi “

´

Ii
`

Bj
˘

´ Ii
`

Aj
˘

¯

Ii
`

Bj
˘ ˆ 100 (8)

where Ii
`

Aj
˘

is the i´th intensity computed for the first sub-period of the j´th station and Ii
`

Bj
˘

is
the i´th intensity computed for the second sub-period of the j´th station.

The significance of changes in rainfall extremes was then assessed by comparing the mean of
the difference in the intensity of heavy rainfall events with the difference expected under the null
hypothesis. The null hypothesis states that there is no difference in the intensity of high rainfall events
between An and Bn periods. Two statistical tests were used for testing this significance: the Paired
samples t-test [37] and the Wilcoxon test (paired samples) [38]. For detail about the computation of
these tests, the reader can refer to references [37,38].

2.4. Hubert Segmentation Test, Kriging, Standardized Precipitation and Extreme Precipitation Indexes

To determine change points in the number of heavy rainfall days above some thresholds per
year, we applied the Hubert Segmentation Test. Its principle is to split the data into m segments
(m > 1) in such a way that the mean computed over a segment is different from the mean of the
neighboring segment.

Let Xi ti “ i1, i2 ; 1 ă i1 and i2 ă N with i1 ă i2u be a segment of the initial series of data. From a
particular segmentation of order m done on the initial data, we can define [39] iktk “ 1, 2, ...,mu, as the
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rank of the initial series extremity of the kth segment; xk , as the mean of the k-th segment; and Dm, as
the square of the difference between the data and the segmentation considered, where

Dm “

m
ÿ

k“1

dk with dk “

ik
ÿ

i“ik´1`1

pxi ´ xiq
2 (9)

The algorithm tries to minimize Dm and the means of continuous segments must be significantly
different. This later constrain is satisfied by applying the test of Scheffé [39].

The interpolation of change in heavy rainfall magnitude was done using the kriging method.
Kriging is a linear interpolation method that allows estimating areal values as a weighted mean of the
point observations [40]. The weights attributed to the different observations depend on the variability
structure of the variable. This variability structure is taken into account using the variogram function,
which is the difference between the variance and the covariance function. Empirical variograms
are calculated using the observation datasets and then a variogram model is fitted. For each grid
cell, using the variogram model, a linear system yields the interpolation weights attributed to the
observation points. For a detailed presentation of theoretical and practical issues related to kriging,
see, for example, reference [41].

The standardized precipitation index (SPI) and the standardized extreme precipitation index
(SEPI) was used to analysis the correlation between the annual rainfall and the extreme rainfall. The SPI
is defined as:

Xi,j “
Yi,j ´Yi

σi
(10)

where Xi,j is the SPI of the year j at the station i, Yi,j is the annual rainfall of the year j at the station i,
Yi is the mean annual rainfall at the station i and σi is the standard deviation of the mean annual rainfall
at the station i. The SEPI is computed in a similar manner by considering the series of maximum
annual rainfall at each station.

3. Results and Discussion

3.1. Identification of Homogeneous Regions

In the application of K-means clustering, the number of clusters or groups must be set a priori.
The PCA was used to find the number of components based on the longitude, the latitude, the altitude
and the mean annual rainfall (MAR) of each station. Table 1 shows the importance of each principal
component (PC). The three first components explained more than 97% of the variance of the data.
This suggests that using three groups was sufficient to reproduce most of the variance in the dataset.
Based on this, the number of clusters was set to three during the K-means clustering. Figure 2 shows
the stations of each group (cluster).

Table 1. Importance of principal components (PC).

Components and Statistics PC1 PC2 PC3 PC4

Standard Deviation 1.4 1.0 0.9 0.3
Proportion of Variance 0.5 0.28 0.21 0.02
Cumulative Proportion 0.49 0.76 0.98 1

Group 1 had nine stations located in the northeast of the basin with a mean annual rainfall of 1084
mm and an average altitude of 360 m above sea level. Most of the stations of this group are located in
a unimodal rainfall regime. Group 2 was comprised of fifteen stations located in the south of the basin
with mean annual rainfall of 1079 mm and an average altitude of 169 m. This group was located in a
bimodal rainfall regime. Group 3 had ten stations located in the western part of the basin with mean
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annual rainfall of 1187 mm and a mean altitude above sea level of 378 m. The mean annual rainfall
was computed for the period 1970 to 2010 ignoring the years having more than 10% of data missing.

Figure 2. Location of rainfall sites of the three groups (clusters) in the Ouémé basin.

3.2. Significance of Change in Heavy Rainfall over Ouémé Basin

The Paired samples t-test and Wilcoxon test (paired samples) were both applied to the difference
in the rainfall intensities of each station. A change is considered if it has been detected by both tests.
Considering the results obtained from the non-homogeneous period and for all studied return periods,
82% of the stations show statistically significant change at 99% confidence level (corresponding to
alpha = 1% significance level). This means that heavy rainfall over the study area has statistically
changed at 82% of the stations. Among the statistically significant changes, 57% of the stations exhibit
a positive change and 43% a negative change. Considering the mean percentage change for all return
periods, the highest positive change was observed at the station of Tchètti while the highest negative
change was observed at Savè.

Analysis of the spatial variation of change was done based on the three rainfall regions found
during the cluster analysis. Figure 3 shows the maximum, the minimum and the averages of positive
and negative changes by region for each return quantile. There is no clear pattern about the change
direction of heavy rainfall in the different regions since positive as well as negative changes were found.
Nevertheless, for all regions, the maximum negative percentage changes were greater in magnitude
than the maximum positive changes for most of the return periods. The highest negative changes were
found in Region 2 while the highest positive changes were observed in Region 3 similarly to what was
obtained for the mean annual rainfall of these regions.

In Region 1, for all the studied return periods, the average negative change varied between ´15%
and ´17% while the maximum positive change varied between 7% (two-year) and 13% (30-year).
The average negative changes were stable for the different return periods compared to the average
positive changes which increased with the return periods.

In Region 2, the average negative changes varied between –13% (five-year) and –17% (15-year)
when the average positive changes varied between 9% (10-year) and 15% (two-year). For the positive
percentage change, there was a decreasing trend from 30-year to 10-year before increasing up to
two-year return period. No clear trend was found in the average negative changes in this region.
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In Region 3, the average negative changes varied between ´14% (20-year) to ´18% (three-year)
and the average positive changes varied between 13% (three-year) and 21% (20-year). A decreasing
trend is observed from 20-year to two-year return period for the average positive percentage change.

Overall, positive as well as negative changes are balanced in the basin. This kind of mixed pattern
of changes is also observed in other parts of world. Bates et al. [42] report that generally, the frequency
of occurrence of more intense rainfall events in many parts of Asia has increased, causing severe floods,
landslides, and debris and mud flows, while the number of rainy days and total annual amount of
precipitation have decreased. However, they also report that the frequency of extreme rainfall in some
countries of Asia has exhibited a decreasing tendency. Increased precipitation intensity and variability
can increase the risks of flooding. The frequency of heavy precipitation events (or proportion of
total rainfall from heavy falls) will be very likely to increase over most areas during the 21st century,
with consequences for the risk of rain-generated floods.

Climate 2016, 4, 15 8 of 23 

 

causing severe floods, landslides, and debris and mud flows, while the number of rainy days and 

total annual amount of precipitation have decreased. However, they also report that the frequency of 

extreme rainfall in some countries of Asia has exhibited a decreasing tendency. Increased 

precipitation intensity and variability can increase the risks of flooding. The frequency of heavy 

precipitation events (or proportion of total rainfall from heavy falls) will be very likely to increase 

over most areas during the 21st century, with consequences for the risk of rain-generated floods. 

 

Figure 3. Percentage change in heavy rainfall for each region with the maximum (max),  

the minimum (min) and the averages of positive (Av.Po) and negative (Av.Ne) changes for different 

return periods. 

3.3. Spatial Pattern of Change in Heavy Rainfall in the Study Area 

Spatial interpolation of change in heavy rainfall was done using the kriging method. Different 

models used to approximate the variogram corresponding to each return period were the spherical, 

circular and stable models (see Appendix Figure A11 for the model variograms). Figure 4 shows the 

map of change in different return periods of heavy rainfall over the Ouémé basin. Generally,  

the rainfall change-based map shows a mixed pattern of positive and negative changes for the 

different return periods plotted. Firstly, an east–west gradient from negative to positive was observed 

along Region 2. Along the western part of this region, high increases in the intensity of heavy rainfall 

events have been experienced despite the negative rainfall index meaning decreasing in annual 

rainfall since 1970 over West Africa [43]. This case study shows that, depending on the threshold used 

to define dry period, the increase in the frequency of dry spell (statistically significant) observed in 

large part of Sub-Saharan Africa, particularly in Benin [44], does not necessarily mean a decrease in the 

frequency of extreme heavy-rainfall events. In the eastern part of Region 2, decreases in heavy rainfall 

were observed for the different return periods and it is accentuated around the eastern part of the region. 

This change at the southeast of the basin is to be taken with precaution since we do not have enough 

stations in this region to represent the spatial variability. 

For Regions 1 and 3, no general pattern was found. Nevertheless, the decreasing tendency was 

dominant sprinkled with some local increase in heavy rainfall for the different return periods. This 

is in accordance with the finding of Hountondji and Ozer (2000) about the annual maximum rainfall 

recorded during 30 days in Benin. Similarly, downward trend in the extreme rainfall was observed 

Figure 3. Percentage change in heavy rainfall for each region with the maximum (max), the minimum
(min) and the averages of positive (Av.Po) and negative (Av.Ne) changes for different return periods.

3.3. Spatial Pattern of Change in Heavy Rainfall in the Study Area

Spatial interpolation of change in heavy rainfall was done using the kriging method. Different
models used to approximate the variogram corresponding to each return period were the spherical,
circular and stable models (see Appendix Figure A11 for the model variograms). Figure 4 shows
the map of change in different return periods of heavy rainfall over the Ouémé basin. Generally,
the rainfall change-based map shows a mixed pattern of positive and negative changes for the different
return periods plotted. Firstly, an east–west gradient from negative to positive was observed along
Region 2. Along the western part of this region, high increases in the intensity of heavy rainfall events
have been experienced despite the negative rainfall index meaning decreasing in annual rainfall since
1970 over West Africa [43]. This case study shows that, depending on the threshold used to define dry
period, the increase in the frequency of dry spell (statistically significant) observed in large part of
Sub-Saharan Africa, particularly in Benin [44], does not necessarily mean a decrease in the frequency
of extreme heavy-rainfall events. In the eastern part of Region 2, decreases in heavy rainfall were
observed for the different return periods and it is accentuated around the eastern part of the region.
This change at the southeast of the basin is to be taken with precaution since we do not have enough
stations in this region to represent the spatial variability.
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For Regions 1 and 3, no general pattern was found. Nevertheless, the decreasing tendency was
dominant sprinkled with some local increase in heavy rainfall for the different return periods. This is
in accordance with the finding of Hountondji and Ozer (2000) about the annual maximum rainfall
recorded during 30 days in Benin. Similarly, downward trend in the extreme rainfall was observed
by Soro across part of Ivory Coast [45], and by Tarhule and Woo in Nigeria [25], which are located in
almost the same climate region of the study area (Golf of Guinea). Groisman et al. [46] show that a
general decreasing trend in heavy rainfall exists over West Africa. This downward trend, even if it
is not over the entire basin is in accordance with the finding of Goula et al. for Ivory Coast [47] and
Mason et al. for South Africa [22] where the direction of changes in extreme rainfall follows the one of
total annual rainfall (see Section 3.6).

Figure 4. Regionalization of the percentage change in heavy rainfall over the Ouémé basin using the
Kriging method for the non-homogeneous period.

Overall, similar spatial patterns of change were found for the different return periods analyzed but
the magnitude and the spatial extent of change differed from one return period to another mostly for
Region 1 and Region 3. As reported by Bates et al., changes in extremes, including floods and droughts,
are projected to affect water quality and exacerbate many forms of water pollution, including sediments,
nutrients, dissolved organic carbon, pathogens, pesticides and salt, as well as thermal pollution,
with possible negative impacts on ecosystems, human health, and water system reliability [42].
Thus, different adaptation measures should be implemented in order to reduce the negative impact
this change could have in different sectors such as agriculture, health, transportation etc. Some areas in
the different homogeneous regions showed very high change in term of magnitude of positive and
negative percentage change. The frequency of rainfall in these areas is analyzed in the next section.
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3.4. Frequency of Heavy Rainfall at Stations with Highest Changes

More investigation was done about the areas showing the highest positive and negative changes
in heavy rainfall. We concentrated on the rainfall stations having the two highest negative changes
and the two highest positive changes (Region 1: Nikki; Region 2: Savè and Ouèssè; and Region 3:
Tchètti). We computed the number of days with rainfall greater or equal to 50 mm over the available
data length and applied the Hubert segmentation test [48] to each sample. The choice of this index is
justified by the fact that it helps to better understand the frequency of extreme rainfall [47]. Figure 5
shows the plot of the number of days where the daily rainfall is greater or equal to 50 mm at Savè and
Nikki (highest negative change stations), and Ouèssè and Tchètti (highest positive change stations)
with the Hubert segments. A break point was found in 1936 for the station of Savè. The number of
heavy rainfall days during the period 1921–1936 was very high with an average of 13 heavy rainfall
days per year compared with an average of three days during the period of 1937–2012. This implies
that the first period received more extreme rainfall than the second period. At Tchètti, the Hubert
segmentation test found a break in 2004 with an average of four heavy rainfall days per year during
the period 1964–2004 while the period 2005–2012 experienced on average more than seven heavy
rainfall days per year. This shows that less heavy rainfall fell during the first period in comparison
with the second period. For Nikki and Ouèssè, similar changes are found in comparison, respectively,
with Savè and Tchètti (see Figure 5).

Figure 5. Number of heavy rainfall days per year with Hubert segmentation for four stations showing
highest changes (negative (Savè and Nikki) and positive (Ouèssè and Tchètti)) at a threshold of 50 mm.

When we consider the sub-periods used under the “non-homogeneous period” for the station
of Savè, the average of high rainfall days per year was 6.41 during the period 1921–1966 and 2.63
during the period 1967–2012. The first was more than the double of the second period. This shows
that the first period was very wet compared with the second period and explains largely the high
negative percentage change found for this station. Similarly, under the non-homogeneous period,
Nikki exhibited an average of 3.8 high rainfall days per year during the first sub period and 2.5 heavy
rainfall days per year during the second sub period (Figure 6). Indeed, heavy rainfalls have become
less frequent than previously observed in that region. In the same way, the high decrease in the heavy
rainfall could be explained by the reduction in the number of heavy rainfall days per year.

As far as the other two stations were concerned and considering the threshold of 50 mm,
an average of 3.7 and 1.9 heavy rainfall days were found for Tchètti and Ouèssè, respectively, for the
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first period. For the second period, 5.4 and 2.9 are, respectively, the number of rainfall days for Tchètti
and Ouèssè. Contrary to what has been found for the first two stations, the second period was wetter
than the first period for these stations. There was an increase in the number of heavy rainfall days per
year in these areas, which explains the positive change in heavy rainfall found.

Figure 6. Mean number of days with rainfall greater or equal to 50, 40 and 30 mm per year at Savè,
Nikki, Tchètti and Ouèssè stations for two sub periods used in computed change.

In addition, two thresholds (40 and 30 mm) were added to investigate whether the change
direction (sign of the change) would vary depending on the threshold. Low thresholds were chosen
since such amounts (less than 50 mm) of rainfall may lead to flash floods, depending on the morphology
of the region and precedent soil moisture condition. As can be seen in Figure 6, the change direction
remained the same when we vary the threshold meaning that the results obtained were independent
of the choice of the threshold.

3.5. Influence of Homogeneity of the Study Period on the Change

In the study of climate change impact, homogeneous periods (same data length and the same
range) are required. In data scarce regions like West Africa, satisfying this condition is sometimes
difficult, making the results of the study uncertain. Through this, a homogeneous period (1951–2010)
has been used to compare the results with the non-homogeneous period (different data length) used
before. The previous methodology was applied considering the same data length (1951–2010) for all
stations. Seventy-three percent of the stations show a statistically significant change at 99% confidence
level compared to the 82% in the non-homogeneous period. Considering the non-homogeneous period
with length up to 92 years, which was much longer than the one of homogeneous period, the difference
in the number of stations showing significant change means that, long term changes in heavy rainfall
is stronger than recent changes. Figure 7 shows the percentage change of two-, five- and 10-year heavy
rainfall for homogeneous period as well as for the non-homogeneous period. As can be seen, there was
a high difference between the spatial patterns of the two sets of map. For the homogeneous period,
most of the changes for the different return periods were negative, meaning that there was a decreasing
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tendency in heavy rainfall. Nevertheless, positive changes were partially observed in the northern
and southwestern parts of the basin. Due to the limited number of stations used for the homogeneous
period, the result of this interpolation should be taken with caution. For the non-homogeneous period,
there was a mixed pattern of positive and negative changes. In the southwest of the basin, there was
higher increase in heavy rainfall for the non-homogeneous (>17%) than the homogeneous (<10%)
periods. In the same way, the maximum negative change for the non-homogeneous period is greater
in magnitude than the maximum negative change for the homogeneous period. In comparison with
the non-homogeneous period, which was longer (1921–2012), this homogeneous period helps to
quantify recent change in extreme rainfall (1951–2010). Whatever the chosen period (homogeneous or
non-homogeneous) and return periods were, it was found that the decreasing tendency was dominant
in term of spatial distribution. The major difference was in the intensity of this change, which was less
accentuated with the homogeneous period than the non-homogeneous one.

There is a contrast between the station-based results and the interpolation. Indeed, for the at-site
based results, the number of stations showing statistically positive change was greater than the one
showing negative change for the non-homogeneous period. In contrast, after the spatial interpolation,
the area covered by positive change is less than the corresponding area for the negative change.
This may be due the fact that the maximum of positive change is low, sometimes lower than one-third
of the absolute maximum negative for all return periods. This gave more weight to the negative
values during the interpolation than the positive values. The model variogram for the kriging was
an approximation of the observed variogram and this approximation became more accurate with
the number of observation sites. Due to the limited number of stations used, the uncertainties in the
estimation may be high.

Figure 7. Comparison of the percentage changes in heavy rainfall for homogeneous (1950–2010) as
well as for non-homogeneous (variable data length) periods considering two-, five- and 10-year return
periods (R.P.). All maps have the same scale.
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3.6. Extreme Rainfall and Annual Total Rainfall

We computed the correlation coefficient between the annual rainfall and the annual maximal
rainfall considering for each station, the years having less than 10% of data missing. Over the 34 rainfall
stations in the study area, we found 29 stations showing statistically significant correlation coefficient at
95% confidence level. These coefficients vary from 0.3 at Kétou station to 0.75 at Savè station (Table 2).
Eleven stations have a correlation coefficient greater 0.5. This implies that an annual maximum
increases with the annual rainfall amount. A typical example was the station of Savè where the trend
in extreme rainfall was similar to the one of annual rainfall.

Table 2. Correlation coefficient between the annual maximal rainfall and the annual rainfall, and the
corresponding p-value, as well as the correlation coefficient between the annual rainfall and the number
of rainy days with rainfall amount greater or equal to 50 mm.

Stations Annual Maximal Rainfall
and Annual Total Rainfall

Number of Rainy Days > 50 mm
and Annual Total Rainfall

Correlation p-Value Correlation p-Value
Abomey 0.50 7.84E´07 0.52 1.57E´07
Agouna * 0.20 2.41E´01 0.76 9.56E´08
Aklankpa 0.68 9.54E´04 0.72 3.03E´04

Bantè * 0.19 1.21E´01 0.54 2.30E´06
Bassila 0.52 5.45E´04 0.68 8.77E´07

Bembèrèkè 0.50 5.81E´07 0.71 3.58E´15
Bétérou 0.45 1.18E´03 0.70 2.25E´08

Birni 0.39 9.43E´03 0.68 4.04E´07
Bohicon 0.46 5.36E´05 0.64 2.66E´09
Bonou 0.32 3.90E´02 0.72 1.20E´07

Dassa-Zoumé 0.44 3.07E´04 0.75 2.67E´12
Djougou 0.50 3.93E´06 0.80 9.31E´19
Gouka 0.38 1.59E´02 0.68 1.54E´06

Ina 0.38 5.41E´03 0.62 6.98E´07
Kalalé 0.68 1.68E´07 0.69 9.59E´08
Kétou 0.30 2.42E´02 0.74 1.42E´11

Kokoro 0.43 7.83E´03 0.81 1.56E´09
Kouandé 0.44 7.44E´05 0.68 1.42E´11
Lonkly 0.43 1.06E´03 0.71 1.10E´09
Niaouli 0.47 4.67E´05 0.76 7.91E´14
Nikki 0.46 2.90E´05 0.64 5.10E´10

Okpara * 0.19 1.73E´01 0.65 1.24E´07
Ouèssè 0.60 6.01E´06 0.62 2.44E´06

Parakou 0.35 7.53E´04 0.63 8.39E´11
Patargo 0.73 2.49E´04 0.81 1.69E´05

Pénéssoulou * 0.42 5.12E´02 0.38 8.17E´02
Pira 0.49 1.37E´03 0.72 1.32E´07

Savalou 0.51 3.87E´06 0.79 7.66E´17
Savè 0.75 1.76E´17 0.94 1.64E´41

Sèmèrè 0.51 7.96E´03 0.82 3.43E´07
Tchaourou 0.46 2.36E´04 0.76 5.80E´12

Tchètti * 0.24 1.89E´01 0.79 5.67E´08
Toui 0.41 1.40E´03 0.49 8.50E´05

Zagnanado 0.36 9.76E´04 0.77 1.52E´17

* No statistically significant correlation at 5% significance level.

Additionally, we found high and statistically significant (at 5% significance level) correlation
between the number of heavy rainfall days per year and the total annual rainfall for all stations except
Pénéssoulou (Table 2). Precipitation seems to be concentrated in more intense events, with more
or less longer periods of lower precipitation in between. Therefore, intense and heavy episodic
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rainfall events with high runoff amounts were interspersed with longer relatively dry periods with
increased evapotranspiration.

In order to better capture the dynamic between the two variables, we computed the standardized
precipitation index (SPI) and the standardized extreme precipitation index (SEPI). Figure 8 show the
SPI and the SEPI for three stations. It is interesting to note that for all stations, a positive SPI is mostly
accompanied by a positive SEPI and a negative SPI is mostly accompanied by a negative SEPI. In other
words, an increase in annual rainfall leads to an increase in extreme rainfall. When we consider the
case of Savè (Figure 8), between 1922 and 1936, SPI and SEPI were all positive (except the year 1925)
and most values exceeded the standard deviation of the corresponding variable with the highest
index (for SPI) being almost four times the standard deviation of the annual rainfall. The high and
positive indexes found reveal that this period was very wet and accompanied with very heavy rainfall.
From 1936 to 2012, most of the SPI and SEPI had the same sign. An overall 75% of the SPI and SEPI
between 1922 and 2012 exhibited a change of the same direction at Savè station. At Kalalé station, 66%
of the SPI and SEPI showed the same direction changes, while for Ouèssè it was 63%.

Figure 8. Standardized precipitation index (SPI) and standardized extreme precipitation index (SEPI)
for three stations (Kalalé, Ouèssè, and Savè).

4. Conclusions

In this paper, K-means and PCA clustering analyses were performed and three homogeneous
rainfall regions were found in the Ouémé basin. We then explored changes in heavy rainfall following
the peak over threshold approach using the generalized Pareto distribution. The data of each station
were split into two sub-periods and the model was then fitted to the data of each sub-period. Change in
extreme rainfall was then assessed by computing the difference in the intensities of the two sub-periods.
As has been observed in other parts of the word, the frequency of extreme rainfall has changed over
the study area. Significant negative as well as positive changes have been found throughout the
basin. For the non-homogeneous period, 82% of the stations show a statistically significant change,
among which 57% exhibit a positive change and 43% negative change. A positive change is associated
with an increase in heavy rainfall over the area of concerned.
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A spatial interpolation of heavy rainfall corresponding to different return periods was done and it
was found that the southwestern part of the basin shows an increasing tendency in heavy rainfall while
a decreasing tendency was observed in the middle and upper parts, sprinkled with some upward trend.
It was also found that whatever the chosen period (homogeneous or non-homogeneous) and return
periods were, the decreasing tendency is dominant in terms of spatial distribution. The major difference
was in the intensity of this change, which was more accentuated with the non-homogeneous period
than the homogeneous one. Another difference is in the intensity of the positive change, which was
more pronounced with the non-homogeneous period than the homogeneous one. Additionally, we
found high and statistically significant (at 5% significance level) correlation between the number of
heavy rainfall days per year and the total annual rainfall for all stations except Pénéssoulou.

The impacts of changes in the frequency of floods could be tempered by appropriate infrastructure
investments, and by changes in water and land-use management. Change in flood frequency and
magnitude can have positive and negative impacts. It is important, therefore, to be aware of its
consequences at local and national levels and to plan accordingly. The expected continuation of rapid
population growth will increase human exposure to flooding and adequate adaptation measure must
be implemented.

With the mixed pattern of change (increase and decreasing tendency) observed at different
return periods for the heavy rainfall, we can deduce that climates factors may not be the main
element contributing to increasing flood risk in this basin. This is in line with previous research on
high discharge over the same basin, which revealed no significant increase in the annual maximum
discharge at 5% significance level [49]. More investigations are needed to explain the recent flood
inundation observed over the Ouémé basin and at the national level. This may be an analysis of
whether this situation (flooding condition) is accentuated by changes in land use patterns and/or by
the vulnerability of the population.
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Appendix

This appendix provides information on the determination of appropriate threshold for the
peak over threshold and Generalized Pareto distribution application in one hand and the modelled
variograms for spatial interpolation of change. About the threshold selection, the method applied
looked for stability in the estimated parameters as recommended by Coles [34]. The encircled parts
on figure A1 to A10 show the threshold ranges where the stability in the estimated parameters were
approximatively reached taking into account the uncertainty in the estimation. The threshold of 50 mm
was chosen. As far as the spatial interpolation is concerned, the kriging method was used and the
figure A11 shows the models and its parameters for the experimental variograms.



Climate 2016, 4, 15 16 of 23

Figure A1. Parameter estimates against threshold for daily rainfall data at Agouna station.

Figure A2. Parameter estimates against threshold for daily rainfall data at Bonou station
(first sub-samples).
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Figure A3. Parameter estimates against threshold for daily rainfall data at Bonou station
(second sub-samples).

Figure A4. Parameter estimates against threshold for daily rainfall data at Kalalé station.
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Figure A5. Parameter estimates against threshold for daily rainfall data at Kokoro station
(first sub-samples).

Figure A6. Parameter estimates against threshold for daily rainfall data at Kokoro station
(second sub-samples).
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Figure A7. Parameter estimates against threshold for daily rainfall data at Lonkly station.

Figure A8. Parameter estimates against threshold for daily rainfall data at Patargo station.
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Figure A9. Parameter estimates against threshold for daily rainfall data at Pénéssoulou station.

Figure A10. Parameter estimates against threshold for daily rainfall data at Pira station.
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Figure A11. Modelled variograms corresponding to the percentage changes in heavy rainfall of
different return periods.
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