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ABSTRACT

Climate change and variability challenge crop productivity and resource use efficiency in West Africa. Despite
abundant research on climate change impact on crop yields and food security, little is known about climate
change effects on the resource use efficiencies of the main staple crops in the dry savanna agro-ecological zone of
northern Benin, West Africa. This study assessed the impact of climate change on water- and N-use efficiencies,
and yields of maize and sorghum in the dry savanna of northern Benin considering three soil fertility man-
agement options (return of crop residues, mineral NPK fertilizer application, and combinations of both) and
three bias-corrected ensemble mean predictions (BNU-ESM, CanESM2, and MPI-ESM-MR models) of future
climate (2080-2099) under Representative Concentration Pathways (RCPs) of 2.6, 4.5, and 8.5. Seasonal rainfall
is projected to decrease by 2% under RCP 2.6 and by 4% under RCP 4.5, and to increase by 1% under RCP 8.5
relative to the baseline mean (1986-2005). Increasing trends in minimum temperature of +1.0 °C (RCP 2.6),
+2.0°C (RCP 4.5), +4.7°C (RCP 8.5) and maximum temperature of +1.1°C (RCP 2.6), +2.0°C (RCP 4.5),
+4.6 °C (RCP 8.5) are also predicted. Solar radiation was projected to decrease by about 0.4 MJm ™2 d”. Under
these projected climate scenarios, both CERES-Maize and CERES-Sorghum simulated positive responses in
aboveground biomass accumulation during the vegetative growth stages. The predicted increase in aboveground
biomass growth will be largest under RCP8.5 and smallest under RCP 2.6. This impact can be enhanced by
improved soil fertility management, albeit with a crop-specific magnitude. Across the soil fertility management
options, CERES-Maize predicted decreases in water-use efficiency by 17-53%, partial factor productivity of
nitrogen (N) by 10-47%, and internal N-use efficiency by 5-33% for maize. Similarly, CERES-Sorghum simu-
lated decreases in water-use efficiency (23-51%), partial factor productivity of N (22-49%), and internal N-use
efficiency (13-47%) for sorghum. The largest overall loss in resource efficiency and yield were predicted for the
RCP 8.5 scenario. The projected climate change for the dry savanna in northern Benin will likely reduce water-
and N-use efficiencies as well as grain yields of maize and sorghum considerably but these results should be
treated with caution due to shortcomings in the models structure for dealing with effects of enhanced CO,, For
reliable assessments of climate change impact on WUE, it is critically important to update parameterization and
code of the CERES crop models in DSSAT to have a sufficiently strong effect of CO, on stomatal conductance and
on transpiration.

1. Introduction

(Christianson and Vlek, 1991; Gemenet et al., 2015; Schlecht et al.,
2007) and increasingly exposed to rainfall variability and climate

Climate change and variability threaten the future of cropping and change (IPCC, 2013; IPCC, 2007). These challenges will affect resource

livelihoods and food security of the population

in West Africa (Wheeler use efficiency particularly in cereal- e.g. maize (Zea mays L.) and sor-

and von Braun, 2013). Current production systems in the region, in- ghum (Sorghum bicolor L.) based production systems.

cluding northern Benin, are already vulnerable
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to soil fertility depletion Historically, West Africa has experienced wet periods (e.g.
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1930-1960), followed by dry spells (e.g. 1970-1980) and again wet
years (e.g. 1990, 2000), but with increased spatial and temporal
variability (Paeth et al., 2009). Furthermore, temperatures in the region
are expected to gradually increase possibly by as much as 6 °C by 2100
(Riede et al., 2016). The projected changes in rainfall (Cooper et al.,
2008; Gbobaniyi et al., 2014; Sylla et al., 2013), increase in tempera-
ture (IPCC, 2007, 2007; Paeth et al., 2009; Riede et al., 2016), and
enriched CO, environments (IPCC, 2013) may alter the soil nutrient
pools (Delgado-Baquerizo et al., 2013). The climate-driven changes in
soil water and nutrient dynamics (Dintwe and Okin, 2018; Robertson
and Rosswall, 1986) will seriously test the resilience of the major
production systems (Lal, 1993; Whitehead and Crossman, 2012) and
even more worsen food insecurity (Lal, 2004; Wheeler and von Braun,
2013). The projected variability in climate and weather parameters will
negatively impact the Dry Savanna zones such as those of Benin, but the
magnitude of the impacts remains uncertain. This hampers the devel-
opment and implementation of appropriate adaptation measures and
policies to assist farmers and decision-makers.

A number of studies have addressed climate change impacts on crop
yields and food security worldwide (e.g. Wheeler and von Braun, 2013).
Localized studies on crop yield responses to soil fertility under future
climate conditions are coming on stream (Guan et al., 2017; Webber
et al., 2014). Climate change impact assessment in West African Dry
Savanna showed generally decreases in grain yield of maize
(Rosenzweig et al.,, 2014; Thornton et al., 2011) and sorghum
(MacCarthy and Vlek, 2012; Sultan et al., 2013). Reportedly, climate
change impact on cereal yields will likely be more negative with an
increased warming (Faye et al., 2018; Traore et al., 2017). However,
little is known about the impact of climate change on water- and nu-
trient-use efficiencies of major cereals like maize and sorghum in West
African Dry Savanna agro-ecological zones, including northern Benin,
which presently have low to very low resource use efficiencies
(Christianson and Vlek, 1991). Understanding the magnitude of re-
source use efficiency under climate change and variability is, therefore,
crucial for the development of site- and crop-specific adaptation tech-
niques.

Improving resource use efficiencies requires understanding of the
often complex genetic-environment-management interactions. Crop si-
mulation models that integrate the soil-plant-atmosphere complex can
be useful tools to predict the consequences of climate change and cli-
mate variability on resource use efficiency, and help to design sus-
tainable cropping systems. Several Cropping System Models (CSM)
exist, e.g. Decision Support System for Agrotechnology Transfer
(DSSAT-CSM) (Hoogenboom et al., 2015; Jones et al., 2003), Agri-
cultural Production Systems Simulator (APSIM) (Keating et al., 2003)
and Erosion Productivity Impact Calculator (EPIC) (Williams et al.,
1989). Such models permit the quantification of crop growth and
yields, the evaluation of alternative production systems, and the climate
change impact assessment (Hoogenboom et al., 2015). However, these
models need first to be parameterized and evaluated for the target re-
gion (Hoogenboom et al., 2012; Hunt and Boote, 1998). Furthermore,
when envisaging localized climate change impact assessment and in
turn the development of adaptation or mitigation options, outputs of
Global Circulation Models (GCM) must be bias-corrected with station
observations (Gudmundsson et al., 2012; Hawkins et al., 2013) to sig-
nificantly minimize systematic errors in weather inputs and improve
crop model predictions of climate change impact on crops (Challinor
et al., 2017; Glotter et al., 2014). Among these crop models, the DSSAT-
CSM considers soil-water (Ritchie et al., 1998) and nutrient-related
(Godwin and Singh, 1998; Godwin and Vlek, 1985) as well as en-
vironmental and plant physiological processes. In addition, CERES-
Maize and CERES-Sorghum of the DSSAT-CSM were recently calibrated
with data from a researcher-managed field trial (2014), validated with
independent findings (2015), and next evaluated with datasets col-
lected from researcher- and farmer-managed field trials conducted
under rainfed and supplementary irrigation systems (2014-2015) in the
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dry savanna areas of northern Benin (Amouzou et al., 2018a, 2018b).
Both models are, therefore, appropriate tools to explore potential im-
pact of the projected climate change on water- and nutrient-use effi-
ciencies of these crops and to assess sustainable intensification mea-
sures for the smallholders in northern Benin, West Africa. The objective
of this study was to assess the impact of climate change on water- and
N-use efficiencies, as well as on yields of maize and sorghum in the dry
savanna areas of northern Benin.

2. Materials and methods
2.1. Study area

The study was conducted in 2014 and 2015 in the village of Ouri-
Yori (10°49’16”N, 1°4’7”E) in the Dassari basin (10°44’0.15"-10°56’0.6"
N, 01°01’37”-01°11’33” E) located in the administrative department of
Atakora in North-west Benin, West Africa. The site is representative of
the Dry Savanna climate regime with a distinct wet (May to October)
and a dry season (November-April). The annual mean minimum and
maximum temperatures were 21.3 = 0.5°C and 33.6 = 0.5°C, re-
spectively over 1986-2005. During the same period, mean annual
rainfall amounted to 1067 + 185 mm. Major soil groups in the Ouri-
Yori catchment are Plinthosols and Luvisols on the crests and upper
slopes of the inland valleys and Alisols on the lower slopes and valley
bottom lands (Steup, 2016). In general, the soils are shallow due to the
presence of concretions and thus sampling depth was restricted to
60 cm. Soil profile information and weather data used as inputs for
models calibration and evaluation were previously reported (Amouzou
et al., 2018a, 2018b).

2.2. Crop simulation models

The CSM CERES-Maize and CERES-Sorghum models, which are part
of the DSSAT V4.6 (Hoogenboom et al., 2015; Jones et al., 2003), were
used to assess the impact of climate change on water- and N-use effi-
ciencies and yields of maize and sorghum. The models simulated the
growth and development of both crops using a daily time step from
planting to maturity or specified harvest date. Potential growth is a
function of the photosynthetically active solar radiation and its inter-
ception by crops but constrained by suboptimal air temperature, soil
water, nitrogen (N), and phosphorus (P) deficits. Both models account
for temperature effects on crop growth and grain filling rate based on
cardinal temperatures (base, lower and upper optimum, maximum),
assuming trapezoidal responses with 34 °C as optimum temperature
(White et al., 2015; Wilkens and Singh, 2003). The potential effects of
atmospheric CO, fertilization on crop physiological processes are taken
into consideration by both crop models (White et al., 2015). Soil fer-
tility effect (other than N) on daily biomass growth rate is integrated
through a generic soil fertility factor (SLPF) (Hoogenboom et al., 2010;
White et al., 2015). Both models simulate soil water (Ritchie et al.,
1998), N (Godwin and Singh, 1998), P (Adam et al., 2018; Dzotsi et al.,
2010) and carbon (C) balances and their dynamics (Gijsman et al.,
2002; Porter et al., 2009). These crop models have not only been widely
tested in Sub-Saharan Africa (Adnan et al., 2017; MacCarthy et al.,
2010) but have also been used to assess climate change impacts (Faye
et al., 2018; Jones and Thornton, 2003; Singh et al., 2014).

2.3. Models calibration and evaluation

Both models have recently been calibrated and validated for an
improved variety of maize (cv. EVDT-97 STR) and a local variety of
sorghum (cv. local), typical for the study region. The datasets (crop
anthesis, physiological maturity, growth, and yields) for models cali-
bration and validation were collected from researcher-managed on-
farm experiment during the 2014 and 2015 cropping seasons.
Independent datasets (In-season soil moisture and nitrate, crop growth,
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Table 1
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Observed (Obs.) and simulated (Sim.) anthesis (Days after planting, DAP), physiological maturity (DAP), harvest index, and final aboveground biomass (AGB, kg
ha™!) and grain yields (kg ha™') for maize and sorghum in the researcher-managed on-farm experiment during the 2014 and 2015 cropping seasons in the dry

savanna region of Benin, West Africa.

Years Variables Maize (cv. EVDT-97 STR) Sorghum (cv. Local)
Obs. Sim. RMSE nRMSE (%) Obs. Sim. RMSE nRMSE (%)

2014 Anthesis 52 52 0 0 78 76 2 3
Maturity 80 80 0 0 103 103 0 0
Grain yield 2887 2840 47 2 1778 1822 44 2
HI 0.32 0.34 0.02 5 0.22 0.22 0.00 0
AGB yield 9110 8489 621 7 8265 8250 15 0.2

2015 Anthesis 53 54 1 2 99 78 21 21
Maturity 86 85 1 1 128 109 19 15
Grain yield 3718 3970 252 7 2455 2965 510 21
HI 0.37 0.41 0.04 11 0.23 0.28 0.05 25
AGB yield 9416 9669 253 3 11623 10281 1342 12

nitrogen (N) and phosphorus (P) uptake, and yields)), collected from
separate researcher-managed and farmer-managed on-farm experi-
ments (2014-2015), permitted the evaluation of the robustness of the
parameterized models under rainfed and supplementary irrigations
systems (Amouzou et al., 2018a; Amouzou et al., 2018b).

The inputs data (soil, weather, and management) and the results of
the models calibration, validation, and evaluation were reported
(Amouzou et al., 2018b). However, key highlights are recapped here.
The accuracy of the models outputs was assessed with the root mean
square error (RMSE) (Willmott, 1981), normalized-RMSE (nRMSE), and
Index of agreements (d) (Yang et al., 2014). The acceptance thresholds
for the models outputs were the lowest RMSE and nRMSE with d-value
= 0.75 for the yield components and d-value = 0.60 for N and P uptake
and soil moisture (Yang et al., 2014).

The parameterized models simulated accurately crop development,
and yields of maize (cv. EVDT-97 STR) and sorghum (cv. Local) in 2014
and 2015 (Table 1). There was relatively large uncertainty between
observed and simulated phenology for sorghum in the validation period
(Table 1). This discrepancy resulted from the photoperiod sensitive
characteristic of the local sorghum variety. Due to a lack of data, the
models were not calibrated and validated against measured Leaf Area
Index (LAI), which is important for accurate simulation of biomass
accumulation, but still both models showed satisfactory goodness of fit
between the observed and measured yield components.

CERES-Maize and CERES-Sorghum simulated satisfactory in-season
soil moisture dynamics in various layers of the soil profile in the re-
searcher-managed on-farm experiment in 2015 (Table 2). The models
predicted accurately early season dynamics of N and P but tended to
under-predict the dynamics from mid- to the end of the season
(Amouzou et al., 2018b). Both CERES-Maize and CERES-Sorghum
predicted well the total N uptake given the nRMSE (d) of 9% (0.91) and

Table 2

14% (0.88), respectively. Both models predicted P uptake with lower
accuracy than N uptake (Fig. 1), but still fitting in the threshold for the
acceptance of the accuracy of plant nutrient demand outputs. CERES-
Maize and CERES-Sorghum showed satisfactory performance and are,
therefore, suitable tools for exploring water- and N-use efficiencies and
yields of maize and sorghum as affected by the current and improved
soil management regimes in the face of projected climate variability in
the region.

2.4. Climate change scenarios

Historical data on observed daily minimum and maximum tem-
peratures and solar radiation were collected from the National
Meteorological Agency of Benin records at Natitingou (=63 km from
the study site). Daily rainfall was collected from a rain gauge station at
Tanguieta (=27 km from the study site) for the period 1986-2005,
which represents the climate baseline.

Future (2080-2099) bias-corrected ensemble mean predictions of
climate parameters were estimated with the use of three Global
Circulation Models (GCMs : BNU-ESM, CanESM2, and MPI-ESM-MR)
from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) for
three Representative Concentration Pathways (RCPs) of the
International Panel on Climate Change (IPCC) (Gudmundsson et al.,
2012; Hawkins et al.,, 2013). The late century (2080-2099) climate
changes scenarios were assumed because the Second National Com-
munication on Climate Change of Benin Republic (MEHU, 2011) pro-
jected greater rainfall variability and warming trend towards 2100. The
three RCPs (RCP 2.6, RCP 4.5, and RCP 8.5 (IPCC, 2013) differ from
each other in the assumptions of population, economic growth, energy
consumption and sources, and land use (van Vuuren et al., 2011). The
RCP 2.6 is a low level (peak and decline) Greenhouse Gases (GHG)

Agreement between measured and simulated in-season soil moisture content with CERES-Maize and CERES-Sorghum in the 0-20, 20-40, and 40-60 cm soil layers
under rainfed (RF) and supplementary irrigated (SI) conditions with fertilization (+F) in the 2015 cropping season in the dry savanna region of Benin, West Africa.

CSM Treatments Soil layers (cm) Observations (cm® cm ™) Simulations (cm® em ™~ %) RMSE (cm® em~3) nRMSE (%) d-values
CERES-Maize RF +F 0-20 0.215 0.214 0.014 6 0.87
20-40 0.251 0.262 0.280 11 0.65
40-60 0.280 0.295 0.035 13 0.71
SI+F 0-20 0.232 0.219 0.028 12 0.61
20-40 0.284 0.259 0.035 12 0.64
40-60 0.314 0.292 0.041 13 0.69
CERES-Sorghum RF + F 0-20 0.188 0.196 0.035 19 0.85
20-40 0.237 0.242 0.038 16 0.89
40-60 0.323 0.273 0.062 19 0.75
SI+F 0-20 0.237 0.195 0.480 20 0.83
20-40 0.290 0.238 0.055 19 0.84
40-60 0.302 0.267 0.043 14 0.87
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Fig. 1. Observed and simulated N (A1, B1) and P (A2, B2) uptake for maize (A1, A2) and sorghum (B1, B2) under rainfed and supplementary irrigation without (open
symbols) and with fertilization (solid symbols) in researcher-managed experiment for the 2014 and 2015 cropping seasons.

forcing scenario, aiming to limit the increase in global mean tempera-
ture to 2°C (van Vuuren et al., 2011). The RCP 4.5 is a medium
pathway to stabilize the radiative forcing at 4.5W m~2 by 2100
without overshoot (Thomson et al., 2011), while RCP 8.5 assumes a
rising GHG pathway in absence of climate change policy (Riahi et al.,
2011). The daily bias-corrected rainfall, solar radiation, minimum and
maximum temperature outputs for the baseline and future periods were
obtained from the CGIAR Research Program on Climate Change Agri-
culture and Food Security (CCAFS, 2017). We selected the three climate
models among 21 GCMs available, i.e. BNU-ESM of the College of
Global Change and Earth System Science, Beijing Normal University (Ji
et al.,, 2014), CanESM2 of the Canadian Center for Climate Modeling
and Analysis (Chylek et al., 2011), and MPI-ESM-MR of the Max Plank
Institute for Meteorology (Jungclaus et al., 2010). The selection was
based on the high correlation between historical projections and ob-
servations (Fig. 2), as well as on a realistic representation of the sea-
sonal rainfall cycle with the lowest deviations in rainfall, temperatures,
and solar radiation. The ensemble mean (Guan et al., 2017) of the three
climate models was considered for the future weather parameters
(2080-2099). The ensemble mean of weather parameters from several
climate models considerably improves the prediction accuracy com-
pared to individual model predictions (Gbobaniyi et al., 2014; Guan
et al.,, 2017; Mugume et al., 2017). The default atmospheric carbon
dioxide (CO,) concentration of Mauna Loa (NOAA/ESRL, 2018) was
used for the baseline period, while predicted CO, concentrations
(Table 3) reported for RCP 2.6, 4.5, and 8.5 scenarios towards 2100
were used for the future period (Meinshausen et al., 2011).

The historical and future climate datasets served as inputs to run the
models for investigating the responses of both crops to soil fertility
management options under the three climate change scenarios (RCP

2.6, RCP 4.5, and RCP 8.5, Section 2.2).

2.5. Soil fertility management scenarios

Crop responses under the historical and future climates were as-
sessed based on three soil fertility management strategies, namely (1)
an un-amended soil as control (no fertilization), (2) integrated soil-crop
management (recommended rates of NPK at 44, 15 and 18 kg ha™?,
respectively, and recycling of crop residues), and (3) a high mineral
fertilizer use of 80, 26, and 30 kg NPK ha~' (Igue et al., 2015; Saidou
et al., 2012). With the high mineral fertilizer use treatment, N was split-
applied as urea (46%), 50% of the total amount at 20 Days after
planting (DAP) and the remaining 50% at 45 DAP. We assumed the
planting date of June 25th, fitting in the optimum planting window
(Jibrin et al., 2012) in the West African Dry Savanna. Along with the
first N application, P was input in the management file as triple su-
perphosphate (46% P,0s) and K as potassium chloride (60% K;0) at
rates of 26 kg P ha~! and 30 kg K ha™?, respectively. In the integrated
soil-crop management, N, P, and K were set at the rates of 21, 15, and
18kg ha™ for the first fertilization (20 DAP) under each crop as urea,
triple superphosphate, and potassium chloride, respectively. The first
application was top dressed with 23kg N ha™' as urea for the second
fertilization (45 DAP) bringing the total N applied to both crops to 44 kg
ha™’. The combination of climate change scenarios and soil fertility
management strategies was run with each CSM model in a seasonal
mode to simulate various parameters as a proxy for crop responses
including aboveground biomass accumulation, N and P uptake, water-
and N-use efficiencies as well as yields. The assessment of climate
change impact was conducted on Alisols since they represent the
dominant agriculturally used soil type in the case study region
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Fig. 2. Historical observations (1986-2005) and GCM-(BNU-ESM, CanESM2, and MPI-ESM-MR)-based projections of rainfall (mm), maximum and minimum tem-
peratures (°C), and solar radiation (MJ m~2 d?) before (Al, B1, C1, D1) and after calibration (A2, B2, C2, D2) of the models outputs.

(Amouzou et al., 2018b; IUSS Working Group WRB, 2014; Steup, responses of maize and sorghum for each of the three soil fertility

2016). management options under historical climate data (1986-2005) with
responses to the same options assuming the same initial soil conditions

2.6. Data analysis under a future climate (2080-2099) for the RCPs 2.6, 4.5, and 8.5.
Model outputs for water use efficiency (WUE), N-partial productivity

Climate change impact on grain yields, N and P uptake, and water- (N-PFP), and N-internal utilization efficiency (N-IE) were expressed as
and N-use efficiencies were evaluated by comparing predicted grain yield per unit of evapotranspiration [kg grain (mm ET)~ '], grain
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Table 3
Climate change scenarios used in the weather input files and the environmental
modifications.

Field Crops Research 235 (2019) 104-117

yield per N fertilizer applied [kg grain (kg N fertilizer) '], and grain
yield per N uptake [kg grain (kg N uptake) ~'], respectively.

Scenario  GCM Variables Atmospheric CO, 3. Results
(ppm)
) . R R 3.1. Predicted changes in key climate parameters
Baseline  Observation Rainfall Min. and max. 347-380
RCP 2.6  BNU-ESM temperatures,and solar radiation = 421
RCP 45 CanESM2 538 Based on the averages across the climate models BNU-ESM,
RCP 8.5 MPI-ESM-MR 936 CanESM2, and MPI-ESM-MR, the predicted seasonal rainfall change (%)
were -2 + 6 (RCP 2.6), -4 = 8 (RCP 4.5), and +1 * 9 (RCP 8.5)
(Fig. 3A1, A2). Temperatures (°C) are predicted to increase, i.e.
minimum temperatures (Fig. 2B1, B2) by +1.0 + 0.2, +2.0 * 0.2,
+4.7 + 0.4, and maximum temperatures (Fig. 3Cl, C2) by
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Fig. 3. Changes in monthly (A1, B1, C1 D1) and inter-annual (A2, B2, C2, D2) trends based on averages of bias-corrected predictions of BNU-ESM, CanESM2, and
MPI-ESM-MR models (2080-2099) for rainfall (A1, A2), minimum temperature (B1, B2), maximum temperature (C1, C2), and solar radiation (D1, D2). Changes are
relative to baseline mean (1986-2005) under three Representative Concentration Pathways (RCPs): RCP 2.6, 4.5, and 8.5.
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Fig. 4. Changes in cumulative aboveground biomass responses of maize (A1, A2, A3) and sorghum (B1, B2, B3) under future climate (2080-2099) relative to
historical means (1986-2005) assuming an un-amended soil as control (A1, B1), integrated soil-crop management (A2, B2), and high mineral fertilizer use (A3, B3)

and three Representative Concentration Pathways (RCPs): RCP 2.6, 4.5, and 8

respectively. Solar radiation (MJ m~2d!) is predicted to decrease by
-0.4 = 0.6 for RCP 2.6, -0.3 = 0.6 for RCP 4.5, and -0.5 + 0.4 for
RCP 8.5 (Fig. 3D1, D2).

3.2. Changes in cumulative aboveground biomass

Under the projected climate, both CERES-Maize and CERES-
Sorghum predict more vigorous biomass accrual under climate change
scenarios than under the historical condition during the vegetative
growth (Fig. 4). The predicted enhanced initial aboveground biomass
growth was crop specific and in general greater under RCP 8.5 and RCP
4.5 than under RCP 2.6. With integrated soil-crop management or high
mineral fertilizer use, the vegetative growth enhancement was greater
than for the un-amended soil conditions. CERES-Maize predicted lower
biomass accrual in the 2080-99 run than in the historical run from = 60
days after planting (DAP) (Fig. 4A1) under all three climate scenarios in
the un-amended treatment, whereas this would occur from approxi-
mately 70 DAP with integrated soil-crop management or high mineral
fertilizer use (Fig. 4A2, 3). Regardless of the soil fertility management
strategy, the predicted losses in biomass under RCP 2.6 and RCP 4.5
were similar and RCP 8.5 being higher than in the other 2 RCPs
(Fig. 4A1, 2, 3). CERES-Sorghum predicted an extended biomass ac-
cumulation for RCP 8.5 (up to = 80 DAP) compared to RCP 2.6 and 4.5
(< 60 DAP). CERES-Sorghum simulated also smaller difference in
biomass accrual for RCPs 2.6 and 4.5 compared to RCP 8.5, except for
the un-amended conditions (Fig. 4B1, 2, 3).

3.3. Impact on seasonal N and P uptake

The CERES-Maize model predicted general decreases in N (Fig. 5A1)
and P (Fig. 5A2) uptake by maize under future climate conditions, but
the extent of the reductions depended on soil fertility management and
RCP (Table 4). The decreases in N and P uptake by maize were pre-
dicted to be highest with RCP 8.5, irrespective of the soil fertility sce-
narios. CERES-Sorghum also predicted declines in N and P, though to a

.5.
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lesser degree (Fig. 5B1, B2, Table 4).

3.4. Biomass and grain yield trends

The improved soil fertility management strategies, integrated soil-
crop management and high use of mineral fertilizer, increased biomass
and grain yields of maize and sorghum under both historical and future
climate compared to the un-amended soil control (Fig. 6). Both models
predicted decreases in biomass and grain yields, irrespective of the soil
fertility management strategy (Fig. 6, Table 4). The CERES-Maize si-
mulated a decrease in harvested maize biomass of 11-15%, 13-15%,
and 25-29% and grain yield reduction of 10-17%, 17-19%, and
44-46% for RCP 2.6, 4.5 and 8.5, respectively. The decreases in the
predicted total sorghum biomass at harvest were 21-35% for RCP 2.6,
30-47% for RCP 4.5, and 38-45% for RCP 8.5, and grain yields de-
clined by 22-38%, 31-49%, and 44-51%, for RCP s 2.6, 4.5 and 8.5,
respectively (Table 4). The largest reductions in grain yield and biomass
accumulation were estimated under RCP 8.5, irrespective of crop and
soil fertility management (Fig. 6).

3.5. Impact on water- and N-use efficiencies

Both methods of soil fertility management, sole mineral and com-
bined mineral and organic amendment, enhanced water-use efficiencies
(WUE) of maize and sorghum significantly as compared to the control
(Fig. 7A1 and B1). The response of WUE to soil fertility management
was, however, higher for maize than for sorghum. The WUE were
consistently lower in all future scenarios than with historical condition
and more so for the RCP 8.5. CERES-Maize predicted a decrease in
water-use efficiency of 17-53% and CERES-Sorghum of 23-51%
(Table 4).

The integrated soil-crop management practice sustained higher
partial factor productivity (N-PFP) of maize (Fig. 7 A2) and sorghum
(Fig. 7 B2) compared to the high use of mineral fertilizer considering
both historical climate and future climate scenarios. Compared to the
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Fig. 5. Confidence intervals (CI, 95%) for changes in seasonal N (A1, B1) and P (A2, B2) uptake by maize (A1, A2) and sorghum (B1, B2) relative to historical means
(1986-2005) assuming three soil fertility management levels (un-amended soil as control (CONT), integrated soil-crop management (ISC), and high mineral fertilizer
(HMF) under future climate (2080-2099) under three Representative Concentration Pathways (RCPs) of the International Panel on Climate Change (IPCC): RCP 2.6,
4.5, and 8.5 (see Section 2.5).

Table 4
Changes (%) in grain and biomass yield, N and P uptake; Water use efficiency (WUE), N-partial productivity (N-PFP), and N-internal utilization efficiency (N-IE)
under climate change scenarios compared to the historical condition.

Crops Treatments Changes in grain Changes biomass Changes in N Changes in P Changes in WUE  Changes in N-PFP  Changes in N-IE
yield (%) yield (%) uptake (%) uptake (%) (%) (%) (%)
Maize CONT RCP26 —17 -15 -9 -23 -23 -10
RCP 4.5 -17 -15 -6 -20 -26 -13
RCP 85 —44 -29 -17 —28 —-51 -32
ISC RCP 2.6 -10 -11 -6 -12 -17 -10 -5
RCP 45 -18 -13 -9 -16 -25 -18 -10
RCP 85 —46 —-25 —24 —-27 —52 —46 -29
HMF RCP26 -—12 -12 -4 -14 -18 -12 -8
RCP 45 -19 -14 -6 -15 -26 -19 -14
RCP 85 —47 -26 =21 -30 -53 —47 -33
Sorghum CONT RCP2.6 —38 -35 -23 -26 —42 -18
RCP 4.5 -49 —47 -29 -36 —-51 -27
RCP85 -51 —45 -9 -35 —48 —45
ISC RCP 26 —26 —-25 -9 —-23 —-27 —26 -19
RCP 45 -36 -34 -9 -29 -34 -36 -29
RCP 85 —49 —42 -3 —44 —42 —49 —47
HMF RCP26 -—22 -21 -12 —-22 —-23 —-22 -13
RCP 45 -31 -30 -6 -29 -31 -31 -26
RCP 85 —44 -38 6 —40 —44 —44 —47
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Change (IPCC): RCP 2.6, 4.5, and 8.5 (see Section 2.5).
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period 1986-2005, the partial factor productivity of applied N (N-PFP)
was significantly reduced in all future scenarios, and more so with RCP
8.5. The projected decreases in the N-PFP factor varied from 10 to 47%
with CERES-Maize and 22 to 49% with CERES-Sorghum (Table 4).

The simulated N-internal utilization efficiency (N-IE) did not change
too much with soil fertility management options. However, the pre-
dicted N-IE showed a declining trend under the climate change sce-
narios moving from RCP 2.6 to RCP 8.5 with RCP 8.5 showing the
highest decrease (Fig. 7A2, B2). Under RCP 8.5, the predicted changes
in internal N-use efficiency dropped by about 33% with CERES-Maize
and by 47% with CERES-Sorghum (Table 4). Hence, the climate as-
sumptions under RCP 8.5 would considerably reduce water- and N-use
efficiencies of both maize and sorghum.

4. Discussion

Future trends of rainfall, temperature, and solar radiation under the
low (RCP 2.6), medium (RCP 4.5), or high (RCP 8.5) level of GHG-
forcing scenarios for the dry savanna region of northern Benin were
used for the first time in northern Benin to quantify the impact of
projected climate changes on water- and N-use efficiency, N and P
uptake as well as on biomass and grain yields of maize and sorghum
considering three soil fertility management strategies.

4.1. Future climate trends

The predicted changes in temperatures for the study region are in
line with existing estimates of warming trends (Dike et al., 2015; Riede
et al., 2016). For instance, the Benin Second National Communication
on Climate Change predicts temperature increases varying from 2.6 °C
in the southwest to 3.3 °C in northern Benin towards 2100 (MEHU,
2011). In contrast, large discrepancies in seasonal rainfall cycles were
previously reported (Sylla et al., 2013) for the whole of West Africa,
including the study region. The (MEHU, 2011) reported an increase in
mean annual rainfall by 13% in the northwest and by 15% in the
northeast of Benin. The newly developed bias-corrected predictions, as
estimated here with the ensemble mean of BNU-ESM, CanESM2, and
MPI-ESM-MR models (Fig. 2), matched these estimates quite well and
thus served as input for the crop model simulations reported here.

4.2. Climate effects on biomass accrual and resource use efficiency

Key climate projections for the dry savanna region of Benin gen-
erally depict a warming trend and inter-annual rainfall variability for
all three climate scenarios considered. The warming temperatures led
to increases in growing degree days (GDD) or thermal time, which re-
sulted in the accelerated vegetative growth predicted for maize and
sorghum under the climate change scenarios compared to the baseline.
Improved soil fertility management options, e.g. integrated soil-crop
management and high use of mineral fertilizers, boost the effects of
warming temperatures on biomass accumulation of maize and sorghum
under future climate conditions, but only during the vegetative growth
stages (Fig. 4A2, A3, B2, and B3). In addition, the warming tempera-
tures will accelerate N mineralization and that could drive early
growth. The decline in late biomass accumulation under all the three
climate change scenarios compared to the historical run, regardless the
soil fertility management options results from the shortening of
growing period (e.g. reproductive phase) under warming conditions.
The higher temperatures drive early crop growth at the expense of soil
water use (Rosenzweig and Iglesias, 1998), which is then not available
for grain filling. This phenomenon is commonly known as haying-off
(van Herwaarden et al., 1998). The increased water loss through eva-
potranspiration under warming temperatures amplify water deficit late
in the season (Peng et al., 2018). This probably reflected in the reduced
WUE predicted under all climate change scenarios compared to the
historical conditions.
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The water deficit threatens nutrient uptake (Bowen and Baethgen,
1998) and use efficiency as warmer temperatures under climate change
also alter nutrient assimilation (Brouder and Volenec, 2008). The
combination of the predicted warming and rainfall variability will ne-
gatively impact water- and N-use efficiencies in the maize and sorghum-
based production systems in the Savanna region of Benin.

Of particular interest for biomass growth and WUE is an enrichment
of atmospheric CO, that occurs under all the three scenarios. Our re-
sults show that WUE were consistently lower in all future climate sce-
narios. Both CERES-Maize and CERES-Sorghum predicted decreased
WUE under elevated CO- levels. The physiological effects of elevated
COs-levels on biomass growth and WUE are reportedly larger with Cs
crops than for C4 crops (Kimball and Mauney, 1993; Leakey, 2009;
Mauney et al., 1994; Poorter, 1993; Reddy et al., 1995). Physiological
responses of C4 crops such as maize and sorghum to elevated CO,
concentrations occur mainly via reduced stomatal conductance, which
leads to lower canopy transpiration and crop water use (Leakey, 2009;
Leakey et al., 2006). Thus, there is an increase in WUE. In contrast to
the negative WUE reported here, (White et al., 2015) simulated positive
responses of WUE to elevated atmospheric CO, for rainfed sorghum
experiment in Manhattan, Kansas, USA but their result was pre-
dominantly driven by a greater growth in biomass. Both CERES-Maize
and CERES-Sorghum account for CO, fertilization effects assuming
enhanced radiation use efficiency (RUE), resulting in biomass growth
effect, instead of transpiration decrease (White et al., 2015). It is also
likely that there are direct effects of temperature on canopy develop-
ment that might enhance early growth and lead to increased early
season crop water use. In addition, WUE is closely related to tran-
spiration efficiency which is inversely proportional to the mean sa-
turation deficit of the atmosphere which increases with temperature.
Thus, increased vapor pressure deficit with increased temperature will
cause increased water use.

The interacting effects of CO,, stomatal conductance, and canopy
temperature are expected to exacerbate impacts of warming tempera-
tures (White et al., 2011). Crop photosynthesis and transpiration are
also regulated by stomatal resistance and affected by CO, and vapor
pressure deficit (VPD) (Stockle et al., 1992). The RUE is closely related
to VPD (Kiniry et al., 1998), which increase with warming temperatures
(Lobell et al., 2015; Shekoofa et al., 2016) and drive stomatal closure
(Ben-Asher et al., 2013) and leaf level CO, exchange rate (Kiniry et al.,
1998). The integration of effects of these factors is crucial and the
model must be able to deal with that in a biologically realistic manner
to be credible. The CERES framework is currently unable to accom-
modate this and therefore, it needs to be adapted for these physiological
mechanisms under enrichment of atmospheric CO, and warming con-
ditions.

4.3. Climate effects on biomass and grain yields

The simulations reveal an overall future decrease in biomass and
grain yields of maize and sorghum even though the crop models do not
sufficiently capture the effects of CO, on transpiration of these C4 crops.
The reduction in the yields predicted for northern Benin is in line with
findings in other regions for maize (Chipanshi et al., 2003; Faye et al.,
2018; Rosenzweig et al., 2014; Thornton et al., 2011) and sorghum
(Chipanshi et al., 2003; Faye et al., 2018; Singh et al., 2014) although
the simulated impact of climate change shows strong spatial variability.
A decrease in sorghum grain yield of up to 20% was predicted for the
semi-arid region of Ghana using APSIM (MacCarthy and Vlek, 2012),
and by more than 40% for the Sudan and Sahelian Savanna regions of
Senegal, Mali, Burkina Faso, and northern Togo and Benin with the
SARRAH model (Sultan et al., 2013). In contrast, for the Guinean zone
of Ghana, (Srivastava et al., 2017), using the LINTUL5 crop model,
predicted an increase in maize grain by 57% and biomass yields by 59%
under climate change. The present results combined with those of a
comprehensive review of climate change impact on crop yields in West
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Africa (Roudier et al., 2011) indicate that negative impacts are most
likely to prevail in the drier Sudan and Sahelian regions.

The simulated decreases in maize and sorghum grain yields could be
caused by increased temperatures and corresponding heat stress, par-
ticularly during key phenological stages such as anthesis and grain
filling (Deryng et al., 2014; Gabaldén-Leal et al., 2016). Both maize and
sorghum respond to heat stress by regulating water and gas exchange
(Sultan et al., 2013) and thus reducing photosynthesis (Sunoj et al.,
2017), particularly during the reproductive stages. In contrast to these
C4 crops, Cs crops (e.g. soybean and cotton) benefits from high atmo-
spheric CO, concentrations through both a reduction of the stomatal
conductance and an increase in photosynthesis and in turn improved
biomass growth and yields (Roudier et al., 2011). The latter cannot be
expected unless temperatures approximate the optimum for crop
growth and water remains available for grain filling. Reportedly, high-
temperature episodes or heat stress close to anthesis will be more det-
rimental for crop yields than the effects of the increases in mean sea-
sonal temperature (Tesfaye et al., 2016). When air temperatures are
near the upper limit, growth and yield reductions are predicted irre-
spective of the CO, concentrations (Polley, 2002). Testing effects of
maximum and minimum temperature regimes of 32/22, 36/26, 40/30,
and 44/34°C at ambient and elevated CO, on reproductive processes
and yields of sorghum, (Prasad et al., 2006) reported that elevated CO,
increased grain yield at 32/22 °C, but decreased it at 36/26 °C.

The findings reported here suggest an increase in the average
maximum and minimum temperatures during the growing cycle of
maize and sorghum from 30/21°C up to 35/25°C for the RCP 8.5
scenario. Therefore, the grain yield depressions predicted with CERES-
Maize and CERES-Sorghum under RCP 8.5 for northern Benin are most
plausible due to the predicted warming, but those with RCPs 2.6 and
4.5 underscored again haying-off. The high-temperature effects on seed
set and growth can be captured by CERES-Maize and CERES-Sorghum
through the cardinal temperatures, assuming 34°C as the optimum
temperature (Wilkens and Singh, 2003). Reportedly, heat stress leads to
a tremendous reduction in pollen germination (Prasad et al., 2006;
Sunoj et al., 2017) that in turn decreases seed numbers and hence yields
(Deryng et al., 2014; Sultan et al., 2013).

4.4. Limitations of the study

Similar to several crop modeling studies and climate change impact
assessments (Faye et al., 2018; Sultan et al., 2013; Tubiello and Ewert,
2002), this study has its limitations. Hence, the findings of the study
must be considered with caution. The first limitation is the biological
mechanism shortcomings in the structure of the models used in simu-
lating water- and nitrogen use responses to elevated CO, environment.
The modeling approach of DSSAT-CSM to enhanced CO- is to increase
RUE, rather than transpiration (Hoogenboom et al., 2015; White et al.,
2015). This generates more rapid accumulation of biomass and en-
hanced water use that generally lead to earlier onset of stress and re-
duced yield, and thus reduced resource use efficiencies. The insufficient
capture of the effects of CO, on transpiration of maize and sorghum
could result in an over-prediction of the depressive effects of future
climate.We note that our assessments were constrained by incomplete
datasets. Due to lack of data, one sorghum sowing date experiment was
considered for the CERES-Sorghum calibration and validation. The ac-
curacy of the CERES-Sorghum in simulating the sorghum phenology
could be more satisfactory if responses on several sowing dates within
the range of farmer’s sowing window were available for the study area
and considered in the calibration and validation processes.-This short-
coming in simulating accurately the phenology of the local sorghum
likely affects the growth response and thus yield and resource use.
Model calibration and evaluation would also benefit from more data on
leaf area.
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4.5. Mitigating future climate effects

To ease the climate change and variability implications for maize
and sorghum supply in the region, climate-smart actions are thus ur-
gent. Recently, it has been postulated that for many regions in Sub-
Saharan Africa, such actions include the use of inorganic and organic
fertilizers (Montpellier Panel, 2013; Vanlauwe et al., 2014) as strategies
to enable a sustainable intensification of smallholder maize- and sor-
ghum-based production. On the one hand, the simulations in this study,
subject to the limitations of the model structure used, show that both an
integrated soil-crop management and high mineral fertilizer use are
likely to sustain higher WUE and grain yields compared to an un-
amended soil, even when assuming different future climate conditions.
Furthermore, the current projections reveal that an integrated soil-crop
management would result in higher N-partial factor productivity com-
pared to a high use of mineral fertilizers. Since integrated soil fertility
management aims at enhancing both productivity and resource use
efficiencies, it is acknowledged as an important strategy for sustainable
intensification of smallholder agriculture in Sub-Saharan Africa
(Vanlauwe et al., 2014). Our results, indicate that these increases will
still not be able to offset the negative effects on productivity and re-
source use efficiencies due to projected late-season heat and dry con-
ditions. However, the predicted yields under the improved management
options tested for the future climate scenarios are higher than the ob-
served average yields of maize and sorghum in farmers’ fields in Benin
(Amegnaglo, 2018; Amouzou et al., 2018a).

This study did not explicitly assess the effects of the adjustment of
planting dates and shifting in crop cultivars to cope with climate change
impacts. Reportedly, varying planting dates (Kassie et al., 2015),
changing crop cultivars (White et al., 2011), improved soil fertility
strategies (Faye et al., 2018; Liniger et al., 2011), and water manage-
ment (Fox and Rockstrom, 2003; Reddy, 2016) mitigate the negative
impacts of climate change. A combination of these strategies could
significantly buffer the negative impacts of climate change in maize and
sorghum-based production systems in West Africa Dry Savanna, and
probably beyond.

5. Conclusions

Despite the shortcomings in the models structure for dealing with
effects of enhanced CO,, the evaluated CERES-Maize and CERES-
Sorghum models permitted exploring effects of soil fertility manage-
ment options on water- and nutrient-use efficiencies, and yields in the
prevailing maize- and sorghum-based production systems under both
historical and future climate in the dry Savanna region of northern
Benin, West Africa. Under projected climate scenarios, it is most likely
that water- and N-use efficiencies, and N and P uptake of maize and
sorghum will decrease as well as grain yields, which in turn will en-
hance food stress in the region. Soil fertility management practices must
embrace a combination of inorganic fertilizer and organic matter from
various sources to sustain soil quality, high yields, and enhanced N- and
P-use efficiencies of maize and sorghum in the case study region. The
present DSSAT CERES frameworks do not have enough reduction in
transpiration due to elevated CO, levels with present code. We propose
that the DSSAT model developers address the issue of not having suf-
ficiently strong reduction of transpiration by improving how stomatal
conductance is reduced by CO, for credible assessment of climate
change impacts on WUE.
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