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Abstract

In recent decades, there have been substantial increases in crop production in sub-Saharan

Africa (SSA) as a result of higher yields, increased cropping intensity, expansion of irrigated

cropping systems, and rainfed cropland expansion. Yet, to date much of the research focus

of the impact of climate change on crop production in the coming decades has been on crop

yield responses. In this study, we analyse the impact of climate change on the potential for

increasing rainfed cropping intensity through sequential cropping and irrigation expansion in

central Benin. Our approach combines hydrological modelling and scenario analysis involv-

ing two Representative Concentration Pathways (RCPs), two water-use scenarios for the

watershed based on the Shared Socioeconomic Pathways (SSPs), and environmental

water requirements leading to sustained streamflow. Our analyses show that in Benin,

warmer temperatures will severely limit crop production increases achieved through the

expansion of sequential cropping. Depending on the climate change scenario, between

50% and 95% of cultivated areas that can currently support sequential cropping or will need

to revert to single cropping. The results also show that the irrigation potential of the water-

shed will be at least halved by mid-century in all scenario combinations. Given the urgent

need to increase crop production to meet the demands of a growing population in SSA, our

study outlines challenges and the need for planned development that need to be overcome

to improve food security in the coming decades.

Introduction

Increasing crop production in sub-Saharan Africa (SSA) is urgently needed. The population of

the region is projected to double by 2050 compared to 2015 [1]. About 97% of current crop-

land area is under rainfed cultivation [2] and current productivity levels for major food crops,

which are the lowest in the world, are inadequate to meet the projected food demand [3]. To

meet the food demand of a growing population several options for increasing crop production

must be harnessed. These include amongst others crop intensification in rainfed systems to

produce higher yields and/or increased cropping frequency, expansion of irrigated area and

rainfed cropland expansion. Over the past decades, higher yields, increased cropping

PLOS ONE | https://doi.org/10.1371/journal.pone.0192642 March 7, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Duku C, Zwart SJ, Hein L (2018) Impacts

of climate change on cropping patterns in a

tropical, sub-humid watershed. PLoS ONE 13(3):

e0192642. https://doi.org/10.1371/journal.

pone.0192642

Editor: Prasanta K. Subudhi, Louisiana State

University College of Agriculture, UNITED STATES

Received: January 31, 2017

Accepted: January 26, 2018

Published: March 7, 2018

Copyright: © 2018 Duku et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are freely

available from the following institutional data

access for researchers who meet the criteria. 1.

IMPETUS Project (http://geonetwork.impetus.uni-

koeln.de/srv/en/main.home); 2. AMMA-CATCH

(http://bd.amma-catch.org/main.jsf); 3. CCAFS

(http://gisweb.ciat.cgiar.org/MarkSimGCM/).

Funding: This research was conducted at

Wageningen University as part of the project

“Realizing the agricultural potential of inland valley

lowlands in sub-Saharan Africa while maintaining

their environmental services” (RAP-IV). The project

https://doi.org/10.1371/journal.pone.0192642
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192642&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192642&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192642&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192642&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192642&domain=pdf&date_stamp=2018-03-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192642&domain=pdf&date_stamp=2018-03-07
https://doi.org/10.1371/journal.pone.0192642
https://doi.org/10.1371/journal.pone.0192642
http://creativecommons.org/licenses/by/4.0/
http://geonetwork.impetus.uni-koeln.de/srv/en/main.home
http://geonetwork.impetus.uni-koeln.de/srv/en/main.home
http://bd.amma-catch.org/main.jsf
http://gisweb.ciat.cgiar.org/MarkSimGCM/


frequency (i.e. sequential cropping and intercropping) and cropland expansion have

accounted for an estimated 38%, 31% and 31% respectively of the recorded increases in crop

production in SSA [3].

In the coming decades, climate change will affect these various options for increasing crop

production. West Africa in particular has been identified as a regional hotspot of climate

change with climate departure from historical variability projected to occur faster than the

global average [4–6]. Changes in precipitation and temperature will pose serious risks to crop

production systems and food security in general [7–10]. Several studies have examined the

impact of climate change on crop yields in SSA. For example, in Benin, reduced rainfall and

increased rainfall variability is likely to result in yield reductions in maize and yam [11] and, in

Niger, climate change will reduce millet production between 11% to 26% by 2025 [12]. A vari-

ety of mechanisms drive impacts of climate change on crop yields. For example, in Tanzania,

climate change is likely to intensify rice diseases such as bacterial leaf blight leading to greater

yield losses [13]. Climate change will also affect irrigated agriculture in the Sahel region where,

yields of irrigated rice systems are projected to decline by up to 45% by the 2070s [14]. Across

SSA, aggregated mean yields for major food crops are forecasted to decrease by 6% to 24% by

the end of this century [15]. However, focussing on crop yield responses alone underestimates

the impact of climate change on agriculture in SSA. For example, in a key agricultural region

in Brazil, analyses of the sensitivities of crop yields, cropping frequency and cropping area to

inter-annual climate variability showed that about 70% of the total change in agricultural out-

put in the region could be attributed to changes in cropping frequency and/or cropping area

[16]. In SSA, to date, information on the likely impacts of climate change on 1) rainfed crop-

ping frequency in cultivated areas; 2) potential arable land; and 3) the irrigation potential are

rare.

In SSA, sequential cropping in rainfed areas has been one of the ways of increasing crop

yields (in addition to intercropping) and involves cultivation of two or more crops on the

same field after each other or with overlapping growing periods (relay cropping) [17]. Already,

sequential cropping in rainfed systems large parts of SSA is constrained by the length of grow-

ing period, high labour intensity, lack of knowledge and lack of market access [15]. In the com-

ing decades, detailed information on how climate change will affect sequential cropping in

both cultivated areas and in potential arable areas will be vital to reduce agricultural vulnerabil-

ity to climate change.

In addition to cropping frequency, increased application of irrigation water is vital to boost-

ing crop production and meeting the food demand of a growing population in SSA [2, 18–20].

Investments in irrigation are therefore increasing and irrigation water withdrawals in SSA are

expected to increase from 96 km3 (2005 estimate) to 133 km3 per annum by 2050 [3]. How-

ever, changes in precipitation and temperature are not only likely to affect water availability

for irrigation but also irrigation water requirements of major food crops in SSA. Furthermore,

population growth and socioeconomic development are also likely to increase water demand

and hence increase competition for water use. Hence, to support agricultural development and

planning, there is a need for detailed information on how climate change and socioeconomic

development will jointly affect irrigation potential. Yet, despite numerous studies examining

the impact of climate change on water resources in general [21–25], studies specifically exam-

ining the impacts on the capacity to support irrigation expansion are rare in SSA.

Therefore, to provide a better understanding of the varied impacts of climate change on

opportunities for increasing crop production, we examine three potential options for increas-

ing crop production in a large sub-humid tropical watershed in central Benin, the Upper

Ouémé watershed. First, we analyse the impact of climate change on the potential for increas-

ing rainfed cropping frequency through sequential cropping in cultivated areas. Second, we
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analyse the impact of climate change on the suitability of potential arable land areas for rainfed

sequential cropping. Finally, we analyse the combined impacts of climate change and socioeco-

nomic development on the potential for irrigation expansion in the watershed taking into

account household water demand and riverine environmental flow requirements, which are

the two major non-agricultural water uses in the watershed. Our approach combines hydro-

logical modelling and scenario analysis involving two contrasting Representative Concentra-

tion Pathways (RCPs), two water-use scenarios for the watershed based on the Shared

Socioeconomic Pathways (SSPs), and environmental water requirements leading to sustained

water flows in the Upper Ouémé river network.

Methods

Study area

The Upper Ouémé watershed in central Benin covers an area of approximately 14,500 km2

with an estimated population of about 510,000 people [26] (Fig 1). It is located in the sub-

humid tropical zone and is characterized by a unimodal rainfall season from May to October

with about 1250 mm of precipitation per year. In general, Benin is affected by a seasonal

Fig 1. Land cover of the Upper Ouémé watershed showing current cropland areas.

https://doi.org/10.1371/journal.pone.0192642.g001
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alteration of cool and humid monsoon air mass (originating from the Gulf of Guinea), and

hot, dry and dusty Saharan air mass [27]. Rainfall anomalies in Benin and West Africa in gen-

eral have been associated with the northward or southward position of the Inter-Tropical Con-

vergence Zone and the associated low and upper level jet streams [27]. The natural vegetation

of the watershed is a mosaic of savannah woodland and small forest islands. Smallholder

rainfed agriculture is the major economic activity. Maize, rice, yam, cassava, sorghum and mil-

let are the most important food crops, with cotton being the major cash crop. The cropping

intensity of these staple crops is 1.5 [28], indicating that a substantial portion of land either

devoted to these crops or other crops is harvested twice per year. The irrigation sector is poorly

developed and the lack of irrigation water during the dry season is a major problem for many

farmers [29]. Pastoral communities from neighbouring countries such as Nigeria often migrate

to this study area, especially for grazing in the dry season when water and food resources are

scarce in the less humid zones of the Upper Ouémé to the north [30].

Modelling the hydrological response of the watershed

To simulate the hydrological response of the watershed under current and future climate con-

ditions, we used a modified Soil and Water Assessment Tool (SWAT), which had been recon-

figured with a grid-based landscape discretization [31] and further enhanced to simulate water

flow across the discretized landscape units [32, 33]. The SWAT model in general is a spatially

explicit, physical, ecohydrological model that simulates the impact of land use and land man-

agement practices on water, sediments and agricultural chemicals in large complex watersheds

with varying soils, land use and management conditions over several years [34, 35]. The recon-

figuration to a grid-based landscape discretization scheme [31, 36] from the standard Hydro-

logical Response Units (HRUs), enhances the spatial detail and accuracy of simulated

hydrological processes [32]. Furthermore, a landscape routing sub-model was incorporated to

enhance the spatial interaction between discretized landscape units and allowed for the simula-

tion of surface water, lateral and groundwater flow interactions across these units. Detailed

information about the grid-based SWAT landscape model description can be found in Rath-

jens et al. [33] and Arnold et al. [32].

The grid-based SWAT landscape model used in the present study to simulate hydrological

response of the watershed under current climatic and future climatic conditions had been set

up, calibrated and validated in Duku et al. [37]. The input data used to set up the model are

presented in Table 1. The Soil Conservation Service curve number approach was used to

model surface runoff and the daily curve number value was calculated as a function of plant

Table 1. Description of spatial input data of the Upper Ouémé watershed for the SWAT landscape model.

Data type Description Resolution Source

Topography ASTER Digital Elevation Model (DEM) 30m NASA

Land use/ land cover Classified LANDSAT-7 ETM+ image 28.5m IMPETUS [30]

Soil types Soil map and associated parameters derived from geological maps and field surveys 1:200,000 IMPETUS [30]

Precipitation Gridded daily precipitation data (1999 to 2012) 25km AMMA-CATCH [40]

Temperature Gridded monthly average minimum and maximum temperatures (1999 to 2012) 50km CRU TS 3.21 [41]

Household water consumption Groundwater and surface water extractions (village level) IMPETUS [30]

- NASA is the National Aeronautics and Space Administration of the United States

- IMPETUS is Integrated Approach to Efficient Management of Scarce Water Resources in West Africa

- AMMA-CATCH is the African Monsoon and Multidisciplinary Analysis–Coupling the Tropical Atmosphere and the Hydrological Cycle

- CRU TS is the Climate Research Unit Time Series datasets.

https://doi.org/10.1371/journal.pone.0192642.t001
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evapotranspiration [34] and potential evapotranspiration was modelled with the Hargreaves

method [38]. The model was calibrated and validated using daily observed streamflow data

from 11 monitoring stations within the watershed (See S1 File) [37]. Calibration was mostly

from 2001 to 2007 and validation was from 2008 to 2011. Calibration and validation of the

model was carried out using the Sequential Uncertainty Fitting (SUFI-2) optimization algo-

rithm of the SWAT Calibration and Uncertainty Program [39]. See S1 File for the calibrated

parameter values (Table A), graphical (Figure A) and statistical results (Table B) of model cali-

bration and validation.

Climate change and socioeconomic pathways

For the present study, simulations involving daily time-steps were undertaken for the period

from 2003 to 2012. This represented the current climatic conditions henceforth referred to as

the baseline conditions. To simulate the hydrological response of the watershed under future

climate scenarios, climate data (precipitation and temperature) projected under two contrast-

ing Representative Concentration Pathways (RCPs) were utilized. RCPs encompass four

greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate

Change and supersedes the Special Report on Emissions Scenarios projections [42]. For the

present study, precipitation and temperature data projected under RCP2.6 and RCP8.5 for dif-

ferent time-periods were used for SWAT simulation (Table 2). The RCP2.6 scenario is an

emission pathway that leads to the lowest concentration levels of atmospheric greenhouse

gases [5, 43]. It represents a peak in greenhouse gas emissions by 2050 followed by a consistent

decline throughout the rest of this century. It is the pathway needed to realize the targets set

during the twenty-first Conference of Parties of the UN Framework Convention on Climate

Change, i.e. keep mean global warming to within 2˚C above pre-industrial levels. The RCP8.5

scenario, on the other hand, is characterized by increasing greenhouse gas emissions leading

to the highest concentration of atmospheric greenhouse gases by the end of this century [5,

43]. It is representative of the business-as-usual scenario, i.e. a continued increase in green-

house gas emissions.

For simulations under climate-change scenarios, we obtained downscaled monthly precipi-

tation totals, and maximum and minimum temperature data projected under RCP2.6 and

RCP8.5; and for two time-periods i.e. 2041–2050 (2040s) and 2091–2100 (2090s). Daily precip-

itation and temperature data are the outputs of multi-model ensemble of 17 General Circula-

tion Models (GCMs) (see S2 File) and were obtained from the MarkSimGCM geoportal

(http://gisweb.ciat.cgiar.org/MarkSimGCM/) [44]. The MarkSimGCM geoportal is part of the

Consultative Group for International Agricultural Research (CGIAR) research program on

Climate Change Agriculture and Food Security (CCAFS). In MarkSimGCM, fifth-order poly-

nomials are fit to climate anomalies between the baseline [45] and each GCM future climate

prediction. Cubic convolutions are then used to interpolate to smaller grids of about 1 km

Table 2. Changes in annual precipitation totals and average temperature in future climate scenarios compared to

baseline scenario. The average temperature in baseline is 27.4˚C.

Scenario and time

period

Watershed-wide average annual precipitation

total (mm/yr)

Watershed-wide change in average

temperature (˚C)

Baseline 1240 -

RCP2.6 2040s 1180 0.6

RCP2.6 2090s 1160 0.6

RCP8.5 2040s 1180 1.3

RCP8.5 2090s 1145 3.9

https://doi.org/10.1371/journal.pone.0192642.t002
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resolution. These intra-GCM differences are then added to the baseline data to provide

monthly averaged climate data at each grid cell [44]. To produce multi-model ensemble data

drawing from all 17 GCMs, the polynomial functions that were fitted to each individual GCM

were averaged and not the climate data produced by the GCMs, which would have led to a pro-

gressive dilution of the variance as more GCM models were added. A detailed description of

the downscaling and bias correction approach can be found in [44].

To generate the daily time-series of climate data needed to run the SWAT model, we used

the change factor approach [46, 47, 48]. The change factor approach involves the calculation of

the relative changes in monthly precipitation and the absolute changes in temperature between

the multi-model GCM data and the baseline climate data for each time period (i.e. 2040s and

2090s) under each RCP scenario [34]. The change factors were calculated separately for each

of the 44 subwatersheds of the Upper Ouémé watershed (the SWAT model assigns one climate

station to each subwatershed based on the nearest neighbour) [34]. The calculated changes

were used to perturb the baseline climate observations in the calibrated and validated grid-

based SWAT landscape model. In simulating watershed hydrology under each RCP scenario,

the effect of increased atmospheric carbon dioxide concentration was not taken into account.

We discuss the implications of excluding increasing atmospheric carbon dioxide in Section 4.

In addition to the RCPs, we developed water-use scenarios in line with the qualitative nar-

ratives of the Shared Socioeconomic Pathway (SSP) [49, 50] for the calculation of irrigation

potentials (Fig 2). The SSPs are a set of alternative reference assumptions about future socio-

economic development in the absence of climate policies. The SSP1 scenario depicts a develop-

ment pathway characterised by rapid economic development especially in low-income

Fig 2. Schematic diagram of the modelling aproach.

https://doi.org/10.1371/journal.pone.0192642.g002
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countries leading to rapid technological development, increased resource use efficiency and

low population growth whereas SSP3 represents a scenario with slow economic growth, slow

technological development, low resource use efficiency and rapid population growth. In this

study, each SSP was characterized by three variables; population growth, irrigation efficiency,

and per capita domestic water use (Table 3). Estimates of population projections in the water-

shed under each SSP for different time-periods were computed from Jones et al. [51]. Data on

irrigation efficiency was obtained from Hanasaki et al. [52] and had been derived from the

qualitative narrative of each SSP. Finally, we derived estimates of per capita domestic water use

in our study area based on the qualitative narratives of each SSP and data from FAO [53].

Modelling meteorological drought

We characterised meteorological drought conditions under each RCP scenario using the Stan-

dardized Precipitation Evapotranspiration Index (SPEI) [57]. The SPEI methodology estimates

the severity and frequency of meteorological drought by accounting for changes in evapotrans-

piration demand caused by changes in temperature in addition to precipitation. It is based on

a probability distribution fitted to a time-series of the difference between monthly precipita-

tion and potential evapotranspiration (i.e. climatic water balance) aggregated over different

time-scales using a moving window (e.g. 3-month, 6-month etc.). This probability distribution

is transformed to the cumulative distribution function of the standard normal distribution

(with a mean of 0 and standard deviation of 1). In this study, the regional (i.e. average over the

entire watershed) monthly precipitation and potential evapotranspiration time-series were

used. Potential evapotranspiration was computed using the Hargreaves method [38]. The

sequences of climatic water balance in the baseline and for the 2040s and 2090s in each RCP

scenario were used to compute the 6-month (seasonal drought) and 12-month (annual

drought) SPEIs.

Modelling length of growing period

The length of growing period (LGP) indicates the potential for rainfed crop production. We

modelled the LGP as the number of days in a year in which moisture supply (i.e. the sum of

daily precipitation and plant available soil water content) was equal to or exceeded potential

evapotranspiration and temperature was above 5˚C (e.g. [58]). The basic concept according to

the heat unit theory [59, 60] is that plant growth and development will only occur if the tem-

perature exceeds some minimum threshold. For our study area, which is located in tropical

lowlands, the year round minimum daily temperature always exceeds 5˚C. Hence, the limiting

Table 3. Characterization of water-use scenarios in line with the qualitative storylines of the Shared Socioeconomic Pathways (SSPs). Current population in the

watershed is about 510,000 [26]. Values of irrigation efficiency are based on [52].

Baseline water-use 2040s 2090s

SSP1 SSP3 SSP1 SSP3

Irrigation efficiency 0.45� 0.52 0.45 0.61 0.45

Population growth (%)a - 101 156 114 285

Per capita domestic water use (L day-1) 19�� 60 20 100 30

a Percentage increase in population with 2010 as the base year. For the 2040s and 2090s decades, the projected population of the years 2050 and 2100 respectively were

used.

� indicates values of irrigation efficiency under baseline conditions obtained from [54].

�� indicates per capita domestic water use under baseline conditions obtained from [55, 56]. Per capita domestic water use was derived from [53] and the qualitative

storyline of each SSP scenario.

https://doi.org/10.1371/journal.pone.0192642.t003
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factor in the computation of LGP was moisture supply. The SWAT model was used to simulate

daily soil moisture content for the computation of LGP. The computed LGPs were then used

together with the criteria in Table 4, to delineate single, relay and double cropping zones

under each climate change scenario. The criteria in Table 2 is based on the Agro-Ecological

Zone methodology [61]. Sequential cropping zones delineated in this study do not involve the

cultivation of wetland rice, which covers less than 1% of the study area.

Modelling streamflow drought

Streamflow droughts affect the availability of water for irrigation and other consumptive pur-

poses. We used two approaches to compute streamflow droughts; the Standardised Streamflow

Index (SSI) [62, 63] and Severity-Duration-Frequency curves (SDF) [64]. The SSI approach is

similar to the SPEI methodology, however, in this case a non-parametric probability distribu-

tion was fitted to the time-series of monthly streamflow totals simulated at the watershed outlet

[62, 63]. Unlike the SSI approach, the SDF approach involved daily streamflow simulated at

the watershed outlet and streamflow droughts occurred when streamflow was below a speci-

fied threshold for at least a specific period of time (e.g. [64, 65]). We used the environmental

water requirements of the river as the threshold level. The environmental water requirement is

critical for sustaining the natural functioning of riverine ecosystems during periods of high

flow in the wet season and low flow in the dry season. We defined the environmental water

requirements separately for each month as the streamflow value with a 75% exceedance fre-

quency (Q75) [66]. We estimated these threshold levels based on flow duration curves under

baseline climatic conditions. For example, the Q75 value of the month of August was 138 m3s-

1 whereas the value in November was 22 m3s-1. See S3 File for a detailed description of the SDF

approach.

Modelling irrigation potential

We estimated the irrigation potential from a water resources perspective i.e. assuming surface

water availability was the major limiting factor [67]. We created a matrix of RCPs and SSPs,

where each RCP was characterized by 1) the simulated total streamflow in excess of the Q75

threshold level and 2) potential evapotranspiration (crop water demand); and each SSP was

characterized by 1) irrigation efficiency, 2) population growth and 3) per capita domestic

water use (Table 3). Irrigation potential (in hectares) was computed as the quotient between

total volume of streamflow available and irrigation water requirement [67]. The volume of

streamflow available for irrigation was computed using Eq 1. The total irrigation water

requirement was computed as the quotient between crop water demand (using rice as a proxy

crop) and irrigation efficiency. We used rice as a proxy crop for crop water demand because

Table 4. Criteria for delineation of potential rainfed sequential cropping zones under rainfed conditions [61]. Sequential cropping zones are disaggregated into relay

and double cropping zones.

Cropping zones Length of growing period

(days)

Accumulated temperature above 5˚C over the growing

period

Accumulated temperature above 10˚C over the growing

period

Single cropping � 120 - -

Relay croppinga � 200 � 3200 � 2700

Double

croppinga
� 240 � 4000 � 3200

a In double cropping zones, there can be cultivation of two or more crops on the same field after each other whereas in relay cropping zones this involves overlapping

growing periods between the two crops

https://doi.org/10.1371/journal.pone.0192642.t004
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rice is the most commonly irrigated crop in Benin. Furthermore, land-use data with the

required level of detail to distinguish between different crops in croplands are currently

unavailable. Obtaining such information is complicated by the small plot sizes and cropping

patterns varying from year to year. We discuss the implication of the use of rice as a proxy

crop for water demand in Sect. 4,.

W ¼ ½
P

iðVt � Q75Þ� � ðD� PÞ ð1Þ

where W is total annual volume of streamflow available for irrigation (m3 yr-1); Vt is total

monthly volume of streamflow at month i (m3); Q75 is environmental flow requirement of

month i (m3); D is per capita domestic use (m3 person-1 yr-1); P is total watershed population.

Results

Present and projected patterns of meteorological drought

SPEI values are the number of standard deviations by which the anomaly in climatic water bal-

ance deviates from the long-term mean. Our SPEI analyses clearly show a substantial shift

from relatively wetter climatic conditions under the baseline to increasingly drier climatic con-

ditions under both RCP2.6 and RCP8.5 scenarios (Fig 3). Not only will the probability of

occurrence of seasonal drought (6-month SPEI) increase under both RCP2.6 and RCP8.5 but

annual droughts (12-month SPEI) will increase as well.

Fig 3. Probability density plots of 6-month and 12-month Standardized Precipitation Evapotranspiration Index (SPEI) derived under baseline climate

conditions (2003–2012) and under two future climate scenarios. SPEI values< 0 represent meteorological drought and the greater the absolute value, the higher

the severity. SPEI values> 0 represent wetter than normal conditions.

https://doi.org/10.1371/journal.pone.0192642.g003
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Impact of climate change on rainfed production potential

Our analyses show that a watershed-wide average of between 15 and 30 growing days will be

lost depending on the climate change scenario. Despite the loss of growing days, cultivated

and uncultivated areas that currently are used for single cropping or can support it will still be

suitable depending on the type of crop cultivated. However, substantial areas of hitherto

rainfed sequential areas will only be suitable for single cropping (Figs 4 and 5). Depending on

the climate change scenario, between 50% (30,000 ha) and 95% (57,000 ha) of cultivated areas

that are currently used for rainfed sequential cropping or can support it will only be suitable

for single cropping (Figs 4 and 5). In currently uncultivated areas, between 10% and 60% of

the areas where rainfed sequential cropping is currently feasible will only be suitable for single

cropping. Currently over 90% of areas that can support sequential cropping in the watershed,

i.e. over 570,000 ha, are not under cultivation and lie mainly in the forested south-western part

of the watershed (Fig 4). In the coming decades and especially under RCP2.6, a large part of

these areas will still be able to support sequential cropping albeit with either a loss or shorten-

ing of the fallow period (Fig 5). Adequate soil and nutrient management will then be required

to increase productivity.

Fig 4. The cropping zones in the watershed under baseline climatic conditions and RCP scenarios. Sequential cropping zones have been disaggregated into full double

cropping and relay cropping zones. These zones indicate the areas where water availability is sufficient to permit different cropping systems.

https://doi.org/10.1371/journal.pone.0192642.g004
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Impact of climate change on streamflow drought

Our SDF and SSI analyses show that climate change will increase the severity, duration and

frequency of streamflow droughts (Figs 6 and 7). For example, a streamflow drought event

with 120 days duration and a total deficit volume of about 50 million m3 water in the water-

shed is estimated to occur once every 50 years (return period) under baseline climatic condi-

tions. However, in the 2040s, these return periods are projected to be 18 years and 13 years

under the RCP 2.6 and RCP 8.5 scenarios respectively (Fig 6). Increasing severity, duration

and frequency of streamflow drought affects the availability of water for household consump-

tion, riverine ecosystem requirements and irrigation. In addition to population growth,

streamflow droughts will increase competition for water resources (Fig 8). In this study,

because we prioritized household water demand and riverine ecosystem requirements over

irrigation, streamflow droughts substantially reduce the irrigation potential of the watershed.

Impact of climate change and socioeconomic development on irrigation

potential

Fig 8 shows the irrigation potential of the watershed under different combinations of climate

change based on RCPs and socioeconomic development based on SSPs. It shows that the

Fig 5. Proportion of cultivated and potential arable areas suitable for sequential and single cropping under different RCP scenarios in the watershed. The total

cultivated areas in the watershed are 150,000 ha and the potential arable land area is about 1.3 million ha.

https://doi.org/10.1371/journal.pone.0192642.g005
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irrigation potential is likely to be at least halved under all combinations of future climatic con-

ditions based on RCPs and socioeconomic development based on SSPs. This can be mainly

attributed to reduced precipitation and increased temperature resulting in reduced water avail-

ability for irrigation and increased irrigation water requirements. Even though increased irri-

gation efficiency under SSP1 compared to current conditions may reduce the irrigation

intensity, this reduction cannot completely offset the effects of climate change and to a lesser

extent population growth.

Discussion

In this study, we used multi-model ensemble climate data projected by 17 GCMs for simula-

tion. In using multi-model ensemble data, extreme climatic values projected by individual

GCMs are smoothed. To maintain the climate extremes, climate data from individual GCMs

with divergent climatic trajectories can be used. However, in West Africa, where these projec-

tions are highly uncertain especially for precipitation, and there is a large spread across various

GCMs [8, 68], using climate data projected by individual GCMs may not address the structural

uncertainties and independent simulation errors in these models. In these situations, multi-

model ensemble data are highly recommended and have been widely used [69]. The multi-

model ensemble approach have been reported to outperform individual ensemble members in

hindcasting studies and thus provide an improved ‘best estimate’ forecast [69]. Lambert et al.

[70] showed that simulations of multi-model ensemble data of precipitation, temperature, and

pressure of current climate are generally closer to observed distributions, as measured by

mean squared differences, correlations, and variance ratios, than the results of any particular

model. Yira et al. [71] show that as a result of the high uncertainties in precipitation projec-

tions in West Africa, a larger ensemble of climate projections is required to estimate the

Fig 6. Contour plots showing severity-duration-frequency relationships of streamflow droughts in the Upper Ouémé watershed under baseline climatic

conditions (2003–2012) and two RCP scenarios. Contour plots were derived using daily streamflow simulated at the watershed outlet.

https://doi.org/10.1371/journal.pone.0192642.g006
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impacts of climate change on water resources accurately. Giorig et al. [72] suggest that as a

result of these uncertainties, a minimum of four to five multi-model ensemble is needed to

obtain robust regional precipitation change estimates.

We also used the scenario matrix approach [73] to analyse the impacts of climate change

based on RCPs and socioeconomic development based on SSPs on the irrigation potential of

the watershed. It has been pointed out that the radiative forcing projected under some RCPs

may be inconsistent with the socioeconomic assumptions described in some SSPs i.e. certain

SSPs may not produce the level of greenhouse gas emissions needed to achieve the level of

radiative forcing in certain RCPs. However, such inconsistencies occur only at the global scale

of analysis. At the local and regional scales, all possible combinations of RCPs and SSPs may

be possible. Because 1) the global-average level of radiative forcing described in each RCP may

differ from those at the local and regional scales due to a number of factors, including land-use

change and air pollutant concentrations [73]; 2) SSPs are developed as hypothetical cases with-

out new climate policy interventions (mitigation and adaptation) and without being influ-

enced by future climate change [49, 73].

In our analysis, we used the same land-cover and soil parameters for simulation of the

watershed hydrology under both current and future climatic conditions. This is one of the

main sources of uncertainty in our study. Land-cover dynamics affect actual evapotranspira-

tion and together with soil properties influence the partitioning of rainfall into overland flow

and soil infiltration. Incorporating plausible land-use changes could impact on our analyses in

a variety of ways and the net effect on streamflow depends on the types and extent of land-use

Fig 7. Probability density plots of 6-month and 12-month Standardized Streamflow Index (SSI) derived under baseline climatic conditions and under RCP

scenarios. SSI values< 0 represent streamflow drought and the greater the absolute value, the higher the severity. SSI values> 0 represent higher streamflow.

https://doi.org/10.1371/journal.pone.0192642.g007
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changes. For example, conversion of forests and woodlands for crop cultivation reduces dry

season streamflow and consequently water available for irrigation [67]. Nevertheless, by main-

taining these watershed characteristics constant, we were able to isolate the impacts of climate

change on watershed hydrology from the impacts of plausible land-use changes. We excluded

the effects of elevated atmospheric carbon dioxide under future climatic conditions in our

analysis, which is another source of uncertainty. The effect of changes in atmospheric carbon

dioxide on watershed hydrology is incorporated in the SWAT model through a modification

of the Penman-Monteith equation for computing potential evapotranspiration [34]. In this

study, however, we used the Hargreaves equation [38] to compute potential evapotranspiration

because of inadequate data to apply the Penman-Monteith equation. Elevated atmospheric

carbon dioxide has countervailing effects on the transpiration rate of vegetation cover. On one

hand, it reduces transpiration rate by reducing leaf stomatal conductance [46, 74, 75]. On the

other hand, it increases transpiration rate by stimulating plant growth [46, 75, 76]. Their net

effect on the magnitude and seasonality of the components of the hydrological cycle depends

on local weather conditions and vegetation characteristics. For example, in forested watersheds

of the northern Coastal Ranges and Sierra Nevada mountain range in California, research has

shown that elevated carbon dioxide concentrations reduced evapotranspiration by around 3%

and consequently increased streamflow [46]. More research, however, is needed on the net

effect in the sub-humid tropics of West Africa dominated by woodland savannah.

In this study, we computed irrigation potential from a water resources perspective, i.e.

assuming water availability was the only limiting factor for irrigation and all other socioeco-

nomic, biophysical and technological factors were non-limiting. The irrigation potential

reported in this study, therefore, is the maximum irrigable land area because, in practice, other

physical and socioeconomic factors will be constraining. Our approach reflects the fact that

renewable water resources that are adequate for irrigating a given amount of land today may

Fig 8. Irrigation potential (ha) in the Upper Ouémé watershed under current and future climate and water-use scenarios. Superscript a indicates that irrigation

potential estimates represent the 2040s under the SSPs and baseline climate. For 2090s, irrigation potential under baseline climate and SSP1 was 36,100 ha whereas it was

26,900 ha under baseline climate and SSP3.

https://doi.org/10.1371/journal.pone.0192642.g008
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not be so in the future as a result of climate change. Moreover, unlike water availability, many

other limitations may be overcome in the future depending on the socioeconomic develop-

ment pathway. Hence, analysing the impact of climate change on maximum irrigable land

area from a water resources perspective is instructive and important for long-term irrigation

development planning. Our irrigation potential estimates were computed using rice as a proxy

crop for crop water demand. Rice is currently the only staple crop grown on irrigated fields in

the watershed. Compared to other crops, rice has a relatively high water demand especially if

measured on a per hectare basis (as opposed to a per kg of produce basis). Hence for other

crops, our approach underestimates the irrigation potential. Our model can be adapted in a

relatively simple way to assess the amount of other crops that can be irrigated.

In rainfed production systems that are characteristic of the watershed and SSA in general,

crop growth and yield are closely related to the LGP. Across SSA, inadequate LGP is one of the

major constraints to establishing rainfed sequential cropping systems. In this study, we have

demonstrated that increasing drought risk due to climate change will considerably reduce the

LGP across the study area. Due to the reduction in LGP, substantial areas in both cultivated and

uncultivated areas hitherto suitable for rainfed sequential cropping will revert to single crop-

ping. Cultivated and uncultivated areas that can currently support single cropping will still be

suitable in the coming decades. However, the number of crops that can be cultivated (especially

long-cycle crops such as cassava and yam) will be limited as a result of the shortening of the

LGP. Our analyses show that currently about 60,000ha (40%) of cultivated areas in the study

area are suitable for sequential cropping (including relay cropping). It is difficult to ascertain if

all of these areas are actually used for sequential cropping due to inadequate data. However, the

average cropping intensity of staple crops such as maize, yam, cassava and sorghum in the study

area is 1.5, i.e. the harvested area is one and a half times greater than the physical area devoted

to the cultivation of each crop [28]. This can be attributed to both sequential cropping and inter-

cropping. If all 60,000ha of suitable sequential cropping areas in cultivated areas are currently

used for sequential cropping, then in the coming decades, farmers will have to shift to either sin-

gle cropping systems or adopt crop cultivars with shorter growing periods. To a degree, the

impact on crop production may be mitigated by agronomy including breeding of drought resis-

tant varieties. If, however, a substantial portion is only used for single cropping, then climate

change will severely limit such opportunities for increasing crop production. In both situations,

substantial reductions in sequential cropping areas may result in relatively greater rainfed crop-

land expansion to make up for lost opportunities to increase crop production.

Over 90% of the total suitable sequential cropping area is currently not under cultivation and

lies in the forested south-western part of the watershed. In these areas, the higher soil water-

holding capacity allows for relatively longer LGPs and the impact of climate change is relatively

less. However, most of these potentially suitable sequential cropping areas are presently either

forested or are woodland savannahs. The forested areas are essential for biodiversity conserva-

tion, wood resources, water flow regulation, carbon sequestration etc. and the woodland savan-

nah areas provide grazing opportunities for livestock. Particularly during the dry season,

pastoral communities from other parts of Benin and neighbouring countries, such as Nigeria,

often migrate here for grazing [30]. Nevertheless, it is likely that forested and woodland savan-

nah areas will be increasingly under pressure from land use change in the coming decades.

Among others, this may cause tensions between pastoralists traditionally using the areas for

grazing and new settlers. Land use changes in the Upper Ouémé watershed are also likely to

affect population growth and per capita water use. These feedbacks are, however, not included

in the present study and it would be very challenging to do so in the scope of one paper.

In Benin, the total actual land area equipped for irrigation is only 23,000ha [77]. In our

study area, irrigation is almost non-existent. The lack of irrigation water during the dry season
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has been a major problem for many farmers [18, 29]. To sufficiently increase crop production

in the coming decades, irrigation will have to play a crucial role and is a pathway that has been

proposed for other parts of SSA [20, 78]. Under current climatic conditions, there is consider-

able potential for irrigation expansion. A maximum land area of 27,000ha can be irrigated

even after household water demands and environmental water requirements have been imple-

mented. However, our study has shown that future opportunities for irrigation expansion will

be heavily constrained by increased severity, frequency and duration of streamflow droughts.

Streamflow droughts coupled with increased household water-use due to population growth

and socioeconomic development will result in increased competition for surface-water

resources. Where household and environmental water requirements are prioritized over irri-

gation as in this study, streamflow droughts will substantially reduce the irrigation potential of

the watershed. Potential cropland expansion into currently forested areas will also affect sea-

sonal distribution of streamflow further reducing irrigation opportunities especially in the crit-

ical dry season [67]. Deforestation tends to increase peak flow in the wet season and reduce

baseflow in the dry season.

Conclusion

In this study, we have shown that, in addition to crop yield responses, climate change will

affect other options that have been used to increase crop production in recent decades in SSA

i.e. rainfed sequential cropping, rainfed cropland expansion and irrigation expansion. Cur-

rently, about 41% of cultivated areas in the Upper Ouémé watershed are either used for rainfed

sequential cropping or can support it. However, by 2050 this will decrease to between 2% and

16% depending on the climate change scenario. Farmers will therefore have to shift to single

cropping systems or adopt improved agronomic practices including drought-resistant and

short-cycle cultivars. Farmers may also be driven to expand to hitherto uncultivated areas to

make up for lost opportunities to increase crop production. In the Upper Ouémé watershed,

over 90% of the land area that can support rainfed cropping is not currently under cultivation

and largely consists of forest and woodland savannah. This situation is unlike other parts of

Benin where the availability of currently uncultivated land is much lower. A large part of these

potential arable lands will still be able to support rainfed sequential cropping in the coming

decades despite the loss of between 15 and 30 growing days due to their relatively higher soil

moisture storage. If these areas are to be used for rainfed sequential cropping, then fallow peri-

ods will have to be shortened or lost completely and improved soil and nutrient management

will be needed to increase productivity. However, in a previous paper, Duku et al. [67], we

showed that the conversion of forested and woodland savannah areas to cropland will have

negative feedbacks on water availability for irrigation. In the present study, we have shown

that even if there is no change in forest cover, at least 50% of irrigation potential will be lost in

the coming decades due to climate change. Forest and woodland areas, therefore, will be

needed to regulate water flows and increase dry season streamflow in addition to the provision

of other ecosystem services. Our paper shows the importance of using an integrated approach

to rural development planning, where climate change can be expected to have multiple, major

implications on cropping systems and resilience for climate change depends upon maintaining

overall landscape integrity including areas that regulate water flows.
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