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Abstract

Manual weeding is the predominant weed control practice and the most labor-consuming activity in smallholder, rainfed rice systems in sub-
Saharan Africa. This study investigates the technical inefficiency of weeding labor, other labor, and overall inputs, and identifies sources of technical
inefficiency of weeding labor in the context of parasitic weed infestation. The analysis applies a two-stage approach. First, a directional input
distance function DEA approach was used to compute input-specific technical inefficiencies. Second, sources of technical inefficiency of weeding
labor were identified using a truncated bootstrap regression. Data from 406 randomly selected smallholder farmers from Benin (n = 215) and Côte
d’Ivoire (n = 191) were used. The technical inefficiency of weeding labor was high in both countries (58% in Côte d’Ivoire and 69% in Benin).
This implies that a substantial fraction of weeding labor could be saved without reducing rice productivity or increasing the use of other inputs.
A decrease in the technical inefficiency of weeding labor with an increase in production scale was observed. In addition, weeding regime and
education level were each associated to significant changes in the technical inefficiency of weeding labor.

JEL classifications: C01, C02, C14, C34
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1. Introduction

In sub-Saharan Africa (SSA), cereal crop production, in
particular rainfed rice, is negatively affected by weeds (Becker
and Johnson, 2001; Oerke, 2006; Oerke and Dehne, 2004;
Waddington et al., 2010). Among biotic constraints, weeds are
consistently cited to cause the highest crop damage (Demont
et al., 2009; Oerke, 2006). Damage due to weeds results in
both direct and indirect yield losses (Chambers et al., 2010),
as weeds are known to attract other biotic yield-reducing
factors such as viral diseases and grain-feeding birds (Demont
and Rodenburg, 2016; Heinrichs et al., 1997). Smallholders
with weed-infested fields also have higher on-farm workloads,
reduced time for other productive activities, and higher
production costs (Adesina et al., 1994; Demont et al., 2007).
The predominant weed control practice in smallholder rainfed
rice systems consists of manual weeding (Adesina et al., 1994;
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N’cho et al., 2014; Tippe et al., 2017a), while herbicides are
only used by one-third of the smallholder farmers in SSA
(Rodenburg et al., 2019). This explains why for the majority
of farmers in these systems, weeding take up more than 50%
of the available farm labor (Akobundu, 1981; Stessens, 2002).
Manual weeding is time consuming (Ogwuike et al., 2014) and
the amount and costs of weeding labor is a primary concern
(Ruthenberg, 1980). More efficient weeding strategies could
save farmers’ time and money to be allocated to other activities.
In addition, the damage caused by weeds is another important
concern. Weed-inflicted damage is particularly problematic in
case of parasitic weed species.

Parasitic weeds form a special weed group. In addition to the
ordinary crop-weed competition for resources, they parasitize
their host (the crop) to extract resources (water, nutrients, and
metabolites). By changing the host plant’s hormone balance,
they negatively affect the crop (Parker and Riches, 1993).
Parasitic weeds cause important yield losses across crops
and regions throughout the world (N’cho et al., 2017; Parker,
2012). In rainfed rice systems in SSA, the parasitic weed
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species Rhamphicarpa fistulosa (Rice vampire weed), Striga
asiatica, Striga aspera, and Striga hermonthica (Witchweed)
cause increasing problems (Rodenburg et al., 2010, 2015).
These weeds affect rice production in at least 30 countries in
SSA, causing crop losses that amount up to U.S. $200 million
each year, even using conservative estimates (Rodenburg et al.,
2016). As hand weeding is the most used management option
in rainfed rice systems (Ogwuike et al., 2014), rethinking the
role of weeding labor is crucial to improve productivity of these
systems. Labor, and in particular weeding labor, is the most
constraining input factor in smallholder rainfed rice production
systems in SSA. However, the current understanding of the
manual weeding efficiency or the effects of weeds or parasitic
weeds on input use efficiencies is limited.

Manual weeding is tedious, highly labor-intensive, time con-
suming, and often not completed in time (Gongotchame et al.,
2014; Rodenburg and Johnson, 2009). The delay results in
high yield losses, as weeds will unduly compete with the crop
for resources, and therefore in increased technical inefficiency
(Akobundu, 1981). Because of the additional yield-reducing
effects of parasitism, weed infestations might cause an even
higher technical inefficiency. Hence, it is worthwhile to inves-
tigate the efficacy of weeding labor in smallholder, rainfed rice
production systems and to explore how parasitic weed infesta-
tion affects the overall efficiency of weeding labor.

This study aims to investigate (1) the technical inefficiency of
weeding labor, other labor, and overall inputs, and (2) the main
determinants of technical inefficiency of weeding labor in the
context of rainfed rice production in the presence of parasitic
weeds. Published empirical studies that deal with the efficiency
of manual weeding or with the effects of parasitic weeds on the
efficiency of input use are scant. This article uses a directional
distance function and Data Envelopment Analysis (DEA) to
measure technical inefficiency of weeding labor, other labor,
and overall inputs, and it identifies the main determinants of
technical inefficiency in weeding labor using a truncated boot-
strap regression model (Simar and Wilson, 2007). The analysis
in this article is based on farmer-specific data collected in par-
asitic weed-infested rainfed rice production regions of Benin
and Côte d’Ivoire during the cropping season of 2011–2012.

2. Methods

2.1. Input-specific DEA model

DEA is a nonparametric approach to measuring efficiency.
The method has been widely applied in a variety of industries
including agriculture (Simar and Wilson, 2007). In this study,
the input-specific efficiency is estimated using a directional in-
put distance function DEA to compute subvector inefficiency
scores pertaining to a particular input. This allows an estimation
of the extent to which the target input can be saved, keeping
the observed output constant and using the same quantity of
other inputs (Färe et al., 1994; Oude Lansink et al., 2002; Oude
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Fig. 1. Directional input distance function.

Lansink and Silva, 2004). Using this specification, the ineffi-
ciencies of the target inputs (i.e., weeding labor, other labor,
or overall inputs) were computed directly. The subvector tech-
nical inefficiencies were measured using the directional input
distance function as defined by Chambers et al. (1996). As-
suming that the production technology of rainfed rice systems
is appropriately represented by the directional input distance
function, and that farmers produce a vector of outputs y from
a vector of inputs x, decomposed in the target input (xi) and
nontarget inputs (xk−i), the input requirement set of the farming
system technology is given by:

L(y) = {(x, y) such that x can produce y} . (1)

Following Chambers et al. (1996) and assuming convexity
and free disposability of inputs for the farming system tech-
nology, the directional input distance function is defined as
�DI : �M

+ × �N
+ × �N → �,

�DI ( xi, xk−i , y; gxi
) = sup

β

{
β ∈ � : xi − βgxi

∈ L(y)
}

= sup
{
β ∈ � : xi ∈ βgxi

+ L(y)
}
, (2)

where y ∈ �M
+ is a vector of outputs, xi ∈ �N

+ is a vector of target
input, xk−i ∈ �N

+ is a vector of nontarget inputs, the technology is
represented by the input correspondences L : �M

+ → �N
+ which

define input sets L(y) ⊂ �N
+ (Fig. 1), and gxi

is a nonzero vector
in �N

+ defining the direction in which �DI (·) is defined. In the short
run, the directional input distance function gives an estimation
of the maximum contraction in the specific input(s) (second
line of Eq. (2)) or the maximal translation of L(y) (third line
of Eq. (2)) along gxi

that permits keeping the input (x) feasible
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(to reach the frontier) while keeping output (y) and nontarget
inputs (xk−i) constant (Fig. 1).

In this study, the optimal input set varies for each farmer.
Therefore, the realized input-output vector (xi ,y) was used
for the input-specific technical inefficiency measurement
(Chambers et al., 1998; Singbo and Oude Lansink, 2010). For
the technical inefficiency relative to variable returns to scale
(VRS), the function used in the directional distance function
technology is described across the k (k = 1, . . . , K) inputs and
outputs as:

�DI ( xi, xk−i , y ; gxi
|VRS) = minβ,λβ

i

s.t.

(1) Yλ ≥ y ,

(2) Xiλ ≤ xi − βixi,

(3) Xk−iλ ≤ xk−i ,

(4) I′λ = 1 ,

(5) λ ≥ 0,

(3)

where, Y is the (N × 1) vector of observed outputs, y is the
observed output level, Xi and Xk−i are the (N × K) matrix
of target and nontarget inputs, β is a scalar, I is the (N × 1)
unitary vector, and λ is an (N × 1) vector of constants (firms
weights). Constraints 2 and 3 ensure that the solution of the
model finds a value of βi representing the maximum reduction
in the target input i within the technology set holding all non-
target inputs and the output constant. Constraint 4, (I´λ = 1), is
the convexity constraint which imposes VRS to the model. Us-
ing the unknown parameters λ andβ, the model is solved once
for each farmer. The estimates lie between zero and one. An
estimated value of zero for β represents a fully efficient farmer,
located on the efficient frontier (Fig. 1). For such a farmer,
there is no possibility to reduce the target input use without re-
ducing rice production level or increasing the nontarget inputs.
An estimated value greater than zero indicates the existence
of technical inefficiencies. This implies that a share of the tar-
get input can be saved. The VRS specification allows farming
systems to exhibit increasing, constant, or decreasing returns
to scale (DRS). However, Coelli et al. (2002) and Haji (2007)
found that economies of scale were absent in smallholder farm-
ing systems such as the one considered in this study. Hence, a
constant returns to scale (CRS) specification may suffice. For
this reason, both the VRS and CRS specifications were consid-
ered, allowing the computation of scale inefficiency.1 The CRS

specification (
→
D
I

(xi, xk−i , y ; gxi
|CRS)) was computed as in

Eq. (3) by removing the convexity constraint, I´λ = 1 from the
model. This specification assumed that farms operate at their
optimal scale (Speelman et al., 2008).

The convexity restriction I´λ≤1 in �Di(xk′
s , yk′

; −xs |NI, RS)
and I´λ≥1 in �Di(xk′

s , yk′
; −xs |ND, RS) displays Non-

Increasing (NI-RS) and Non-Decreasing (ND-RS) Returns to
Scale, respectively. Hence, to determine the nature of the returns

1 The overall input scale inefficiencies were computed following Färe et al.
(1985).

to scale,2 we used the directional technology scale efficiency
definition 2 as proposed by Fukuyama (2003). The DMU (De-
cision Making Unit) exhibits a:

i. DRS for (x; y) if

�DV
i (x, y) = �DNI

i (x, y) < �DC
i (x, y),

ii. Increasing returns to scale (IRS) for (x; y) if

�DV
i (x, y) < �DNI

i (x, y) = �DC
i (x, y),

iii. CRS for (x; y) if

�DV
i (x, y) = �DNI

i (x, y) = �DC
i (x, y), .

where �DNI
i (x, y) is the Farrell input-oriented NI-primal formu-

lation, and �DV
i (x, y) and �DC

i (x, y) are VRS and CRS formula-
tions, respectively.

The overall input technical inefficiency and subvector ineffi-
ciencies were estimated3 in R3.0.1 using the routine dea.direct
of FEAR.2.0 (Frontier Efficiency Analysis with R) package
(Wilson, 2008). The overall input inefficiency (INIE) was esti-
mated as in Eq. (3) by pulling together all variable inputs in-
cluding weeding labor, in constraint 2, while only fixed inputs
remained unchanged in constraint 3. Since the two countries
operate in different environments and crop management set-
tings, we estimated separate frontiers. Moreover, results from
the Meta frontier (single frontier for both countries together)
estimation were not consistent with the sample data.

2.2. Comparing technical efficiency of parasitic weed-infested
farms to noninfested farms

To show the correlation between the distributions of inef-
ficiency scores on infested and noninfested farms, equality of
distribution was tested for the overall technical inefficiency
and weeding labor technical inefficiency for the subsamples
of parasitic weed-infested farms and noninfested farms. Since
the technical inefficiency scores are unobserved, the statistics
provided by the nonparametric independence tests (Person’s
chi-square, likelihood ratio, and Kendall tau rank correlation
tests) are not valid (Simar and Zelenyuk, 2006). Hence, to test
the equality of distribution of technical inefficiency scores on
parasitic weed-infested farms against noninfested farms in this

2 Since the CRS and VRS specification alone are not able to determine whether
the technology exhibits decreasing or increasing returns to scale, an additional
computation of either the nondecreasing (ND)-primal or the nonincreasing
(NI)-primal is required (Fukuyama, 2003).

3 In the estimation of each directional input distance function model, only the
target input changes. Thus, for overall input inefficiency (INIE), all variable
inputs (xv) varied, including weeding labor, while fixed inputs remained un-
changed. For Weeding Labor Inefficiency (WLIE), only weeding labor (wlab)
altered and all other inputs remained constant. For Other Labor Inefficiency
(OLIE), only Other Labor (olab) was considered variable, while all other re-
maining inputs were kept constant.
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study, the adapted Li test by Simar and Zelenyuk (2006) was
most appropriate and performed in R3.0.1.

2.3. Truncated bootstrap model

To examine the existing correlation between efficiency and
economic agent characteristics, several studies regressed the es-
timated efficiencies on a set of environmental variables (Simar
and Wilson, 2007). However, the input-specific inefficiency es-
timate for a farmer is defined relative to the frontier representing
the best practice. Consequently, the estimated DEA inefficiency
scores are serially correlated (Hirschberg and Lloyd, 2002;
Simar and Wilson, 2007; Xue and Harker, 1999). The structures
of these complex correlations are unknown (Simar and Wilson,
2007). Hence, using these inefficiency scores in a second-stage
regression analysis to explain the variation in technical ineffi-
ciency among farmers would produce invalid inference because
of a violation of the basic assumption of independence within
sample values. Xue and Harker (1999) and Hirschberg and
Lloyd (2002) attempted to address this problem by using a naive
bootstrap approach (Simar and Wilson, 2007). Unfortunately,
this naive bootstrap approach appeared to be inconsistent in
the context of nonparametric efficiency estimations (Simar and
Wilson, 1999a, 1999b). Moreover, Simar and Wilson (2007)
argued that none of these studies have described a clear data
generation processes (DGP) for which these two-stage esti-
mates would be appropriate. To overcome these difficulties,
Simar and Wilson (2007) proposed single and double bootstrap
procedures with a clear DGP. Smoothed bootstrap (Simar and
Wilson, 2000) allows for heterogeneity in the distribution of the
inefficiency (δ). The smoothed bootstrap permits to correct the
serial correlation among the estimated inefficiency scores. And,
both single and double bootstrap procedures permit valid infer-
ence for the second-stage estimation (Simar and Wilson, 2007).
Hence, to identify the determinants of the inefficiency, the sin-
gle bootstrap suffices. Therefore, in this study, a single bootstrap
truncated regression method was used to evaluate sources ex-
plaining differences between weeding labor inefficiency among
farmers (Simar and Wilson, 2007; Singbo and Oude Lansink,
2010). Following Algorithm #1 in Simar and Wilson (2007),

1. We computed subvector4 inefficiency scores pertaining to
weeding labor input using the DEA procedure as described
above.

2. We regressed the estimated inefficiency scores larger than
zero (δ̂i > 0) on selected environmental variables (zi) using
a truncated normal regression with the maximum likelihood
estimator. Since inefficiency scores were used, the truncation
was done at the lower bound of 0.

3. We integrated these estimates into the smoothed bootstrap
procedure of Simar and Wilson (2000) to bootstrap the

4 In defining the subvector inefficiency, only the target input changes while
other inputs and the output remain unchanged.

truncated regression model. We draw iid bootstrap sam-
ple (see Simar and Wilson, 1999a, 1999b, 2000) data from
the truncated empirical normal distribution of the estimated
inefficiency scores, each of the size m < n observations
(m is the number of observations with inefficiency scores
larger than zero (δ̂i > 0), m = 178 < 215 for Benin and
m = 154 < 191 for Côte d’Ivoire). We looped over the next
three steps (parametric bootstrapping) L times (L = 2,000)
to obtain a set of bootstrap estimates A = {(β̂∗, σ̂ ∗

ε )
b
}Lb=1.

The choice of L determines the number of bootstrap replica-
tions used to construct the estimates’ confidence intervals,
which requires more information (Simar and Wilson, 2007).
Hall (1986) suggests 1,000 replications, Balezentis et al.
(2014), Simar and Wilson (2007), and Yu (2003) used 2,000
replications. A larger number of replications can be used to
achieve more accurate estimates at the cost of waiting time
depending on the CPU power of the computer (Simar and
Wilson, 2007; Yu, 2003).

� In step 3.1, for each i = 1, . . . , m, we draw εi (the residual)
from the N (0,σ̂ 2

ε ) distribution with left-truncation at (0−zi β̂).
� In step 3.2, for each i = 1, . . . , m, we computed

δ∗
i = ziβ̂ + εi .

� In step 3.3, we used the maximum likelihood method to esti-
mate the truncated regression of δ∗

i on zi , yielding estimates
parameters (β̂∗, σ̂ ∗

ε ) and marginal effects of explanatory
variables.

4. We used the bootstrap values in A and the original estimates,
β̂, σ̂ε to construct a bootstrap-based confidence interval at
95% for each parameter estimate.5

3. Data description

Via a multistage sampling process, we selected rice-
producing regions and districts where parasitic weeds were
present. In Benin, five districts were selected in three regions,
i.e., Dassa and Glazoue in the Collines region, Kandi in the
Alibori region, and Boucoumbe and Tanguieta in the Atacora
region. In Côte d’Ivoire, eight districts were selected in two
regions in the North of the country, i.e., Korhogo, Sinématiali,
Karakoro, and Tioro in the Poro region, and Boundiali, Ganaoni,
Siempurgo, and Kolia in the Bagoue region. The three regions
in Benin accounted for 80% of the national rice area and 85%
of the paddy production (DPP/MAEP, 2009). In Côte d’Ivoire,
parasitic weed infestation is limited to the northern regions of
the country. In Benin, we considered only Rhamphicarpa and
in Côte d’Ivoire we considered both Rhamphicarpa and Striga.
Both parasitic weeds are found exclusively in rainfed rice sys-
tems. Rhamphicarpa is found only in rainfed lowlands and
Striga in rainfed uplands (Kabiri et al., 2015). Consequently,

5 Details on the algorithm used in Stata for the bootstrap are available upon
request from the authors.
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in Côte d’Ivoire, farmers were selected among the whole (rain-
fed) rice growing community, whereas in Benin only farmers of
inland valleys (rainfed lowland areas) were selected. In Benin,
18 (12 infested and 6 not infested) cropped lowlands within
the five districts were randomly selected. In Côte d’Ivoire, 24
villages within the 8 districts (3 villages per district) were ran-
domly selected. At the village level in Côte d’Ivoire and at the
lowland level in Benin, farmers were selected randomly. The
samples comprised farmers who used manual weeding at least
once during the cropping campaign 2011–2012 (n = 215 for
Benin and n = 191 for Côte d’Ivoire). In the random sample
in Côte d’Ivoire, 43% of farmers had fields infested by either
the parasitic weeds Rhamphicarpa fistulosa or Striga hermon-
thica (mainly) and Striga aspera. In the sample for Benin, 65%
of farmers had fields infested by Rhamphicarpa fistulosa. The
samples comprised 75% female rice farmers, in Benin, and
15%, in Côte d’Ivoire. Farmers were asked about their use of
farming inputs, measured by quantities and costs. The following
characteristics were collected based on farmers’ estimations:
field infestation status (infested or not infested) and infestation
intensity (low, medium, high), surface area covered by para-
sitic weeds, the location of the field along the upland-lowland
continuum, the weeding methods, and corresponding number
of weeding operations.

3.1. Input-specific DEA model data

The best practice frontier was estimated using one output
and five inputs. The output and inputs6 were defined based on
farmers’ cropping practices in rainfed rice production systems.
Paddy (unhusked) rice production was the output, measured in
kilogram per farm. The defined inputs consisted of (1) man-
ual weeding labor, (2) labor used for other activities and other
services, (3) intermediate inputs (seed and chemical inputs)—
defined as variable inputs, (4) land, and (5) capital—the lat-
ter two reflecting fixed inputs. Fertilizer and herbicide costs
were aggregated into intermediate input costs to avoid “zero-
observation” as many farmers did not use all of them. Fertilizer
costs included expenditures (computed based on farmer dec-
laration) on organic manure and mineral fertilizer. Labor was
measured in hours and included family labor as well as hired la-
bor. Labor was computed based on the number of men, women,
and children involved and their time spent in each rice farm-
ing operation. Time investment was converted into a quality-
adjusted measure of labor, using the ratio 0.5 for children, 0.75
for women, and 1 for men (CIRAD-GRET-MAE, 2002, p. 323).
Area under rice was measured using a global positioning system
(GPS) device (GARMIN, Model GPSMAP 60CSx). To account
for the quality of seed, the costs of seeds coming from farm-
ers’ harvest were computed using the average price of paddy
in each country while the actual (market) prices were used in
case seeds were purchased. Herbicides, other inputs and other

6 An outlier test was performed in FEAR, and outliers (only 6) were removed
from the analysis

service costs were measured at their actual prices. Capital costs
related to the use of machinery and small materials (hoes, axes,
machetes, etc.) were expressed in terms of their annual (lin-
ear) depreciation costs (N’cho et al., 2017). Table 1 presents
the mean and standard deviation of the output and each input,
based on the farmer-specific data of the two surveyed countries.

3.2. Data used in bootstrap regression models

Studies by Haji (2007), Speelman et al. (2008), Singbo and
Oude Lansink (2010), Kokoye et al. (2013), Theriault and Serra
(2014), Ayenew et al. (2017), Pede et al. (2018), and Piesse et al.
(2018), showed that farmers’ technical efficiency is determined
by a set of socioeconomic, institutional, and farm-specific fac-
tors. Such factors included household size, education, gender,
age, years of experience in rice farming, access to agricultural
information, land tenure, area under rice, and number of fields.
These factors affect farm management and, therefore, are
expected to impact technical inefficiency levels (Haji, 2007). To
capture the effect of parasitic weed infestation on rice farmers’
technical inefficiency, variables such as the parasitic weed
infestation level (measured by the proportion of farm area under
rice affected by parasitic weeds), manual weeding modalities,7

and interaction effects of parasitic weed infestation and manual
weeding modalities were introduced in the models. Manual
weeding consisted of hand or hoe weeding. Four manual
weeding modalities were considered to account for differences
in timing and frequency: (1) weeding once early (up to 30
days after sowing (DAS)), (2) weeding once late (>30 DAS),
(3) weeding twice, and (4) weeding three times or more.
Based on the research by Ekeleme et al. (2009), Toure et al.
(2011), and Ogwuike et al. (2014), we expected that weeding
once early and/or weeding twice would reduce farmers’
technical inefficiency. However, since weeding more than
twice significantly reduces the severity of Rhamphicarpa in
Benin (N’cho et al., 2014), we expected this to reduce the
technical inefficiency even more than weeding once, in case of
Rhamphicarpa infestation. The infested area of the rice farm
was expected to increase farmers’ inefficiency as a larger area
infested may require additional work. The complete list of
variables used in the truncated bootstrap regression model with
their expected signs is presented in Table 2.

4. Results

4.1. Technical and scale inefficiencies

The average overall input technical inefficiency, labor tech-
nical inefficiencies, and the overall scale inefficiencies are pre-
sented in Table 3.

7 Weeding modalities are defined by (1) the number of days between sowing
and each weeding operation and (2) the number of weeding operations required.



156 N’cho et al./Agricultural Economics 50 (2019) 151–163

Table 1
Mean of farms households and standard deviation of outputs and inputs used in the DEA model

Benin Côte d’Ivoire

Variables Mean (n = 215) Std. Dev. Mean (n = 191) Std. Dev.

Paddy production (kg/farm) 426 (463) 1,756 (1,819)
Land (ha) 0.24 (0.25) 1.53 (1.09)
Capital (FCFA)a 2,959 (3,526) 21,347 (37,703)
Weeding labor (hour) 195 (170) 573 (515)
Other labor (hour) 333 (275) 1,904 (1,637)
Intermediate inputs (FCFA) 19,735 (26,610) 108,576 (98,679)

Note: a West African CFA franc, the fixed exchange rate is €1 = 656 FCFA.

Table 2
Expected sign, mean, and standard deviation of variables used in truncated bootstrap regressions

Benin Côte d’Ivoire

Variables
Expected
sign Mean Std. Dev. Mean Std. Dev.

Weeding labor inefficiency (dependent variable) 0.69 0.35 0.58 0.35
Gender of farmer (1 = female farmer) ± 0.73 0.45 0.15 0.35
Education (number of years completed) – 2.21 3.33 1.16 2.48
Household size (number of individuals) – 7.76 5.24 10.86 5.80
Area under rice (ha) – 0.24 0.24 1.53 1.09
Area infested (%) + 35.01 36.39 15.22 22.70
MW once early – 0.03 0.18 0.28 0.45
MW once late ± 0.01 0.1 0.10 0.30
MW more than twicea ± 0.52 0.50 0.14 0.34
MW once*area infested (interaction effect) ± 1.44 9.48 3.20 10.66
MW more than twice*area infested (interaction effect) – 22.36 33.59 3.28 12.71
Access to information (1 = access, 0 = no access) – 0.86 0.35 0.69 0.46

Notes: MW = Manual Weeding. aMW twice is used as base for comparison.

Table 3
Technical and scale inefficiencies of specific inputs

Benin Côte d’Ivoire

Inefficiencies Mean Std. Dev. Min Max 2.5–97.5 pct. Mean Std. Dev. Min Max 2.5–97.5 pct.

WLIEa (VRS) 0.69 0.35 0 0.99 0.63–0.73 0.58 0.35 0 0.98 0.53–0.63
OLIEa (VRS) 0.64 0.34 0 0.98 0.60–0.69 0.60 0.34 0 0.97 0.55–0.65
INIEa (VRS) 0.53 0.31 0 0.95 0.49–0.57 0.41 0.28 0 0.92 0.37–0.45
WLIEa (CRS) 0.82 0.25 0 0.99 0.78–0.85 0.71** 0.30 0 0.99 0.66–0.75
OLIEa (CRS) 0.84 0.25 0 0.99 0.80–0.87 0.82** 0.29 0 0.99 0.77–0.86
INIEa (CRS) 0.68 0.26 0 0.99 0.64–0.71 0.58 0.28 0 0.97 0.54–0.62
OSIE 0.15 0.20 0 0.92 0.12–0.17 0.17 0.21 0 0.90 0.14–0.20

Notes: pct. = percentile, WLIE = weeding labor technical inefficiency, CRS = constant returns to scale, OLIE = other labor technical inefficiency, INIE =
overall inputs technical inefficiency, VRS = variable returns to scale, OSIE = overall scale inefficiency. aEstimated values were obtained in the directional vectors
(gxi

, gy ) = (xwlab, 0) for WLIE, (gxi
, gy ) = (xolab, 0) for OLIE, and (gxi

, gy ) = (xv, 0) for INIE, wlab = weeding labor, olab = other labor, xv = variable inputs,
(**) statistically significant at 5% (2.5th and 97.5th pct. do not overlap), comparing weeding labor use to other labor use.

The average overall input technical inefficiency was 41%
and 53% for the VRS model, and 58% and 68% for the CRS
models in Côte d’Ivoire and Benin, respectively. The mean
technical inefficiency of weeding labor was 58% and 69% for
VRS, and 71% and 82% for CRS in Côte d’Ivoire and Benin,
respectively. The mean technical inefficiency of other labor was
60% and 64% (for VRS), and 82% and 84% (for CRS), in Côte
d’Ivoire and Benin, respectively.

In both countries, weeding labor technical inefficiencies were
not significantly different from other labor use inefficiencies

(OLIE), except in Côte d’Ivoire for the CRS specification where
weeding labor technical inefficiency (WLIE) was smaller than
OLIE (Table 3).8

The overall scale inefficiency (OSIE) was 17% in Côte
d’Ivoire and 15% in Benin. In Benin, only 6% of farmers were
scale efficient (OSIE = 0, i.e., operating at constant return to

8 Weeding labor inefficiency was compared to other labor and overall ineffi-
ciency using the range of 2.5th–97.5th percentiles. The compared mean values
are different if the range of 2.5th–97.5th percentile did not overlap, otherwise
the difference was not significant.
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Fig. 2. Distribution of overall inputs and weeding labor technical inefficiency scores per country.
a. Variable returns to scale (VRS), Benin.
b. Variable returns to scale (VRS), Côte d’Ivoire.
c. Constant returns to scale (CRS), Benin.
d. Constant returns to scale (CRS), Côte d’Ivoire.
Notes: INIE = overall inputs technical inefficiency, WLIE = weeding labor technical inefficiency, CRS = constant returns to scale, VRS = variable returns to scale,
TIE= Technical Inefficiency.

scale). In Côte d’Ivoire, only 10% of farmers were scale ef-
ficient. Hence, most farmers in the sample in both countries
were scale inefficient. Fig. 2 shows the distribution of tech-
nical inefficiency scores among the farmers in the sample for
overall inputs and weeding labor. The distribution of technical
inefficiencies of weeding labor indicated the presence of two
rather extreme clusters of farmers in both countries. On the
one hand, farmers were clustered at a higher inefficiency level
(WLIE > 80%), while at the same time there was a cluster of
very efficient farmers (WLIE < 20%). The intermediate cluster

(20% � WLIE � 80%) was less represented in both countries,
indicating a divergence between farmers with respect to their
weed management abilities.

Since the focus of this study is on weeding labor inefficiency
in the presence of parasitic weeds, we drew the distribution
of weeding labor inefficiency for farms infested with parasitic
weeds and compared it to that of farms not infested by these
weeds (Fig. 3). The two distributions appear identical in
both countries for the VRS as well as the CRS specification.
The distributions for the subsamples of parasitic-infested and
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Fig. 3. Distribution of weeding labor technical inefficiency scores per farm infestation status per country.
a. Variable returns to scale (VRS), Benin.
b. Variable returns to scale (VRS), Côte d’Ivoire.
c. Constant returns to scale (CRS), Benin.
d. Constant returns to scale (CRS), Côte d’Ivoire.

noninfested farms both followed cluster shapes similar to what
was observed for the whole sample. In order to test whether the
distribution of overall input inefficiencies were the same for
the parasitic weed-infested farms and the noninfested farms,
we ran the adapted Li test.

While for the Benin sample, the test results were not signif-
icant (P > 0.1; not reported) for either overall inefficiency or
weeding labor inefficiency, in Côte d’Ivoire both inefficiency
distributions were significant for the VRS specification only
(P = 0.0097 for INIE and P = 0.0249 for WLIE). Hence,
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the null hypothesis of equal distributions for the subsamples
of parasitic weed-infested and noninfested farms was not
rejected for Benin, while it was rejected for Côte d’Ivoire for
the VRS specification. This suggests that the distributions of
farmers’ overall inefficiency and weeding labor inefficiency
were independent of the parasitic weed infestations of farms in
Benin, while the opposite was observed in Côte d’Ivoire.

Furthermore, the difference of mean inefficiency scores be-
tween the subsamples of infested and noninfested farms was
checked using the 2.5th and 97.5th percentiles of their respec-
tive mean inefficiency scores (Table 4). Significant differences
(P < 0.05) were found only for INIE and WLIE for the VRS
specification in Côte d’Ivoire (Table 4), indicating that for over-
all input and weeding labor, the technical inefficiency for non-
infested farms is generally lower than that for infested farms.

4.2. Determinants of inefficiency of weeding labor

The results of the truncated bootstrap regression showing the
sources of weeding labor inefficiency are displayed in Table 5.
The scale inefficiency estimates showed that less than 10%
of the farmers in both countries operated at CRS. Moreover,
results from the VRS, CRS, and NI-RS estimation (in Benin
DV(0.7) < DNI(0.9) = DC(0.9) and in Côte d’Ivoire DV(0.6) <

DNI(0.7) = DC(0.7)) confirmed that the technologies exhibit
IRS in both countries. Hence, only the technical inefficiency
estimates of the VRS specification were used for the second
stage regression.

In Côte d’Ivoire, weeding once (early) decreased technical
inefficiency (P > 0.05), while the effect of a single late weeding
intervention was not significant (Table 5). Weeding early once
and having a higher education were associated with a lower
technical inefficiency. A larger share of plot infested was asso-
ciated with a higher inefficiency. Ceteris paribus, an increase
of 1% in area infested by parasitic weeds increases the WLIE
by 0.3%. An additional year of education decreases the WLIE
by 2%. In Benin, only larger farms were associated to a lower
inefficiency (P < 0.05) while, contrary to Côte d’Ivoire, the
technical inefficiency of weeding labor did not increase with an
increase in infested area (P > 0.1). Weeding more than twice
had no significant effect on inefficiency (P > 0.1%) in either of
the two countries.

5. Discussion

The results of the directional input distance function show
that smallholder, rainfed rice farming systems are overall tech-
nically inefficient in their use of inputs. This is consistent
with findings by N’cho et al. (2017), indicating that substan-
tial amounts of production resources can be saved, while pre-
serving the current level of output. The technical inefficiency
of weeding labor was high. This was expected because man-
ual weeding is highly labor intensive and farmers do not have
many effective alternatives (Rodenburg et al., 2019). The high

technical inefficiency found in this study is consistent with pre-
vious studies that indicate rice production is constrained by
inefficient use of inputs in SSA (Mujawamariya et al., 2017).
For example, Sherlund et al. (2002) found high technical in-
efficiency in smallholder rice farm systems in Côte d’Ivoire.
Mujawamariya et al. (2017) argued that in SSA, the risk per-
ceived by rice farmers aggravates inefficiency. The high tech-
nical inefficiency of weeding labor can be explained by its
crucial role in the production. In rainfed rice systems of SSA,
a lack of proper weeding results in high production losses (Ro-
denburg and Johnson, 2009). Farmers rely mainly on manual
weeding due to the limited number of effective and afford-
able weed management practices available to them (Rodenburg
et al., 2019). Parasitic weeds are expected to cause a higher
damage level to the crop compared to ordinary weeds because,
in addition to the ordinary crop-weed competition, they also
parasitize host crop plants. Therefore, in order to prevent seri-
ous production losses, farmers in parasitic weed-infested fields
apply substantially more labor resources for weeding. The ma-
jority of that labor is family labor (Singbo and Oude Lansink,
2010), which is not reflected in actual expenditures and farm-
ers may not consider the opportunity costs of this. Similar to
the case of herbicide use, as underlined by Olson and Eidman
(1992), weeding labor might be used more to manage risks
than to maximize profits. Farmers who perceive a high risk of
production losses for their farms infested by parasitic weeds
may overreact, resulting in an excess use of labor for weeding
and thereby increase technical inefficiency more significantly
than in the case of ordinary weeds. This is particularly true for
Côte d’Ivoire where weeding labor inefficiency was higher on
infested farms than on noninfested farms (Section 4.1). Since
manual weeding is labor-intensive, the completion of this task
is often delayed, resulting in lower rice yields despite the large
amount of labor (Ogwuike et al., 2014; Rodenburg and John-
son, 2009). To be efficient, timing of weeding interventions in
rice is very important as was shown by Johnson et al. (2004).
A relatively small time investment (e.g., one or two weeding
operations) at critical early crop stages may result in a higher
technical efficiency of weeding labor and lower weed-inflicted
yield losses compared to a relatively large time investment (e.g.,
more than two weeding interventions) at later, less critical crop
stages (Toure et al., 2011). In the case of parasitic weeds, an
early intervention may be even more important as it will reduce
the period of parasitism. In the case of Rhamphicarpa fistulosa,
a facultative parasitic weed that starts as an ordinary weed and
only starts parasitizing its host once it has developed into a
seedling, early weeding may even completely avert parasitism
(Kabiri et al., 2016).

The large difference observed between CRS and VRS overall
technical inefficiency scores suggests the presence of signifi-
cant scale inefficiencies in the sample. More than 92% of the
farmers did not operate at their optimal scale. The results of
the bootstrap regression indicated that technical inefficiencies
of weeding labor indeed decreased with larger farms (mainly
in Benin). A possible explanation of this observation is that
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Table 4
Mean values of specific technical inefficiencies of noninfested and infested farms and their 2.5th and 97.5th percentiles

Benin Côte d’Ivoire
Technical
inefficiencies

Infestation status
(1 = yes, 0 = no) Mean 2.5-97.5 pct. Mean 2.5-97.5 pct.

INIE (VRS) 1 0.53 0.48–0.58 0.48** 0.42–0.54
0 0.53 0.46–0.61 0.36** 0.31–0.42

WLIE (VRS) 1 0.70 0.65–0.76 0.66** 0.59–0.73
0 0.66 0.57–0.74 0.52** 0.45–0.59

OLIE (VRS) 1 0.65 0.59–0.70 0.66 0.59–0.73
0 0.63 0.55–0.72 0.55 0.49–0.62

INIE (CRS) 1 0.67 0.63–0.71 0.59 0.53–0.65
0 0.70 0.64–0.76 0.57 0.51–0.63

WLIE (CRS) 1 0.82 0.77–0.86 0.74 0.68–0.80
0 0.81 0.76–0.87 0.68 0.62–0.74

OLIE (CRS) 1 0.84 0.80–0.88 0.83 0.77–0.89
0 0.83 0.76–0.89 0.81 0.75–0.86

Notes: pct. = percentile, INIE = overall inputs technical inefficiency, WLIE = weeding labor technical inefficiency, OLIE = other labor technical inefficiency,
CRS = constant returns to scale, VRS = variable returns to scale, (**) statistically significant at 5% (2.5th and 97.5th pct.).

Table 5
Results of the truncated bootstrap regression for sources of weeding labor technical inefficiency

Variables Benin Côte d’Ivoire

Inefficiency effect variables Coefficients Std. Err. 95% CI Coefficients Std. Err. 95% CI

Constant 0.80** 0.10 [0.60, 0.99] 0.81** 0.08 [0.66, 0.97]
Female farmer 0.08 0.06 [−0.04, 0.20] 0.05 0.07 [−0.08, 0.18]
Education 0.01 0.01 [−0.01, 0.02] −0.02** 0.01 [−0.04, −0.002]
Household size 0.003 0.005 [−0.01, 0.01] −0.002 0.004 [−0.01, 0.01]
Area under rice −0.32** 0.12 [−0.57, −0.10] −0.02 0.03 [−0.07, 0.03]
Area infested 0.001 0.001 [−0.001, 0.003] 0.003* 0.001 [4e-04, 0.005]b

MW once early −0.20 0.28 [−0.77, 0.32] −0.14** 0.07 [−0.28, −0.02]
MW once late −0.36 0.35 [−1.1, 0.18] −0.07 0.10 [−0.26, 0.11]
MW more than twicea −0.03 0.07 [−0.17, 0.11] 0.12 0.10 [−0.06, 0.30]
MW once* area infested 0.001 0.005 [−0.01, 0.01] 0.001 0.003 [−0.004, 0.007]
MW more than twice*area infested −0.0001 0.001 [−0.003, 0.003] −0.001 0.003 [−0.01, 0.005]
Access to information 0.004 0.07 [−0.14, 0.15] −0.07 0.05 [−0.17, 0.04]
Log likelihood −56.497823 −31.893233
Prob > chi2 0.00 0.00

Notes: MW= manual weeding, CI = confidence interval. aMW twice is the base category. bThe 90% CI was reported. **P < 0.05 and *P < 0.1 based on the
bootstrap 95% and 90% CI (L = 2,000 replications).

larger farms are realizing IRS. This is supported by Coelli et al.
(2002), who showed that if farms were realizing IRS, the area
cropped is expected to have a significant positive impact on
efficiency levels (decreasing inefficiency). Similar results were
obtained by Balezentis et al. (2014) using a DEA bootstrap
approach, suggesting that increasing area under rice may raise
the technical efficiency. This implies that increasing the scale
of farming systems could improve the efficiency of the use of
inputs. This is consistent with the first stage estimates that the
farming systems are exhibiting IRS. A substantial scale ineffi-
ciency was also reported by Singbo and Oude Lansink (2010) in
lowland farming systems in Benin. However, the results are not
consistent with Haji (2007) who found that scale inefficiency
was nearly absent in the more traditional farming systems of
smallholder farms in Eastern Ethiopia.

Farmers with parasitic weed-infested rice fields recognize
that hand weeding may be effective (in particular against the
facultative parasite Rhamphicarpa fistulosa), but also consider

these interventions overly laborious (Tippe et al., 2017a). An
important implication of the results of the current study is that,
with the actual level of technology, farmers can substantially
reduce weeding labor and still produce the observed output
(conditional on the use of other inputs too). This implies that
by improving the technical efficiency of weeding labor, farmers
could reallocate a significant fraction of labor to other produc-
tive activities of the household without decreasing rice produc-
tion or increasing the use of other inputs. Improving technical
efficiency of weeding labor might require training of farmers
in Good Agricultural Practices (GAP) for rainfed rice systems
and in labor saving strategies (e.g., optimized weeding timing).
Although recent efforts already resulted in defining feasible
parasitic weed control strategies for subsistence rice farmers in
SSA (e.g., Randrianjafizanaka et al., 2018; Tippe et al., 2017b),
more strategies need to be developed and disseminated. While
such strategies should preferably be labor saving, other impor-
tant criteria for increased adoption potential are affordability,
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accessibility, feasibility in terms of implementation, and control
efficacy (Tippe et al., 2017a).

The large difference in the distributions of technical ineffi-
ciency scores of weeding labor and overall inputs indicates that
farmers performed differently in managing their overall pro-
duction process compared to managing weeds. The fact that a
large fraction of the farmers in both countries exhibit a high
level of inefficiency suggests that the majority of farmers did
not perform well with regards to weed management. This find-
ing suggests the need for actions that focus on solving the
general weed management problem in rainfed rice systems in
SSA. The majority of subsistence rice farmers has limited re-
sources and limited weed management capacities. The farmers
operating fully efficiently may have different profiles with re-
spect to weed management compared to the farmers that are
operating less efficiently. For example, they may be exposed
to agricultural training and learn possible labor-saving strate-
gies such as optimal timing of weeding. Education was linked
to decreased technical inefficiencies, and this is in line with
empirical findings in SSA. For instance, a study by Ayenew
et al. (2017) showed that literate smallholder farmers are more
likely to be technically efficient in agriculture than their illiter-
ate counterparts. Sherlund et al. (2002) showed that education is
positively and significantly correlated with technical efficiency
for smallholder rice farmers in Côte d’Ivoire. Furthermore, col-
lege level or higher education was associated to higher technical
efficiency than secondary and elementary education. Likewise,
Schut et al. (2015) identified agricultural education and aware-
ness raising among farmers and extension agents as one of the
most important drivers for innovation to better address parasitic
weed problems in rice. Finally, for extension services to be more
effective in training farmers on new technologies, the quality
and mode of service delivery should also improve. Achandi
et al. (2018) showed that extension services for rice production
systems in SSA are not yet gender inclusive enough to reach all
farmers effectively.

The results of the second stage truncated bootstrap regression
suggest that farmers can reduce the technical inefficiency of
weeding labor by increasing their area under rice (mainly in
Benin) or by adjusting their weeding operation to one early
manual weeding (in Côte d’Ivoire). In Côte d’Ivoire, weeding
once but early had a significant negative effect on technical in-
efficiency of weeding labor while weeding once but late did not.
These results again confirm the importance of the development
of adapted weeding regimes9 with proper timing of interven-
tions (see Ekeleme et al., 2009; Johnson et al., 2004; Toure
et al., 2011). The insignificant coefficient of weeding more
than twice indicates that, in both countries, it has similar effects
on technical inefficiency of weeding labor as weeding thrice or
more (weeding twice is the base category). This means that at
the current technology level, keeping all other inputs constant,
there might not be a need to weed more than twice to produce

9 This refers to the number of DAS at which each weeding operation is
conducted.

the current output level. Ogwuike et al. (2014) concluded that
weeding an upland rice crop more than once increases the weed-
ing labor efficiency (by about 37%) and rice productivity (by
more than 27%); hence, the optimum number of weeding oper-
ations is most likely two. In Côte d’Ivoire, the effect (interaction
effect) of one manual weeding on weeding labor inefficiency of
a field infested by parasitic weeds was positive while the effect
of weeding a parasitic weed-infested field more than twice was
negative. This means that, when rice farms become infested by
parasitic weeds, the effect of weeding once on technical ineffi-
ciency changes from negative to positive, while the opposite ef-
fect is observed with weeding more than twice. However, these
joint effects were not significant. In Benin, both corresponding
effects remain negative and nonsignificant regardless of the
infestation status of the fields. These nonsignificant effects
indicate that both weeding once and weeding more than twice
might not be effective when plots become infested by parasitic
weeds. The negative and nonsignificant joint effects of weeding
more than twice and infestation by parasitic weeds indicate that,
in the presence of parasitic weeds, farmers tend to weed more
than twice in their attempt to secure their harvest. This suggests
that future research on parasitic weed management strategies
needs to investigate both the appropriate weeding timings and
the number of weeding interventions, as well as alternative cost-
effective strategies to hand weeding. Since the research solely
used the efficiency analysis approach to account for economic
benefits of alternative parasitic weed management methods
in rice farming, future research should use bioeconomic
simulation models which combine biological and economical
outcomes to provide better insights in the composition of
strategies that provide the most accurate and most cost-effective
control.

6. Conclusion

This article analyzes the technical inefficiency of weeding
labor and other inputs in rainfed rice systems in the presence
of parasitic weeds in Côte d’Ivoire and Benin. In the first
stage, a directional input distance function with DEA approach
was used to estimate the inefficiency scores pertaining to a
specific input. In the second stage, a robust truncated bootstrap
regression was used to identify sources of technical inefficiency
of weeding labor.

We found that substantial inefficiency exists in both
countries for overall input, weeding labor, and other labor,
suggesting that at the current technology level farmers can
maintain their production level and still save inputs. In
addition, substantial overall scale inefficiencies were found
in both countries, suggesting that an increase in the scale
of production systems will reduce the technical inefficiency.
Results from the truncated bootstrap regression further suggest
that the currently used manual weeding regimes and number
of weeding interventions on farms infested by parasitic weeds
are not efficient in controlling the parasitic weeds. Operating
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fully efficiently would save a substantial amount of labor that
can be allocated to other productive activities of the household
without decreasing the current rice production levels.

To the best of our knowledge, this study is the first to ex-
plicitly raise the crucial issue of weeding labor inefficiency in
smallholder rainfed rice farming systems of SSA. Overall, the
study contributes to the broader literature on production effi-
ciency of rice systems by showing that in smallholder rainfed
rice farming systems of SSA, coping with parasitic weed infes-
tations, there is scope for improving the technical efficiency of
weeding labor.

These findings have significant policy implications since
the extent of estimated technical inefficiency prevailing in
an agricultural economy matters when determining whether
scarce agricultural development funds are best spent to de-
velop improved technologies or to train farmers on how to
better use existing improved technologies. We therefore rec-
ommend that National Agricultural Research and Extension
Systems (NARES), in collaboration with international organi-
zations in agricultural research, develop research and extension
programs aiming at reducing technical inefficiency of weed-
ing labor. The current study suggests this can be achieved by
increasing the scale of production, using effective alternative
weeding modalities, enhancing agricultural education of farm-
ers, raising awareness on the parasitic weeds among farmers
and agricultural extension agents, and exploring labor-saving
and cost-effective parasitic weeding technologies. This could
enhance rainfed rice systems productivity and contribute to im-
proving food security in countries affected by parasitic weed
problems.

Although the second stage truncated bootstrap estimation of
the study aimed at identifying factors significantly affecting the
inefficiency of weeding labor, covariates available in the data
set were restricted to farm and farm household characteristics.
Future research may explore and develop models that combine
biological, ecological, and economical outcomes to enhance
our understanding of what the most cost-effective and accu-
rate management strategies are for parasitic weed-infested rice
farms. Moreover, since the study only focused on the technical
relationship between inputs and outputs, future studies could in-
clude the cost of input and investigate the economic efficiency
of weeding labor.
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tion agricole au Nord de la Côte d’Ivoire. Katholieke Universiteit Leuven,
Leuven, Belgium.

Theriault, V., Serra, R., 2014. Institutional environment and technical efficiency:
A stochastic frontier analysis of cotton producers in West Africa. J. Agr.
Econ. 65(2), 383–405.

Tippe, D.E., Rodenburg, J., Schut, M., van Ast, A., Kayeke, J., Bastiaans, L.,
2017a. Farmers’ knowledge, use and preferences of parasitic weed man-
agement strategies in rain-fed rice production systems. Crop Protect. 99,
93–107.

Tippe, D., Rodenburg, J., van Ast, A., Anten, N.P.R., Dieng, I., Kayeke, J.,
Cissoko, M., Bastiaans, L., 2017b. Delayed or early sowing: Timing as
parasitic weed control strategy in rice is species and ecosystem dependent.
Field Crop. Res. 214, 14–24.

Toure, A., Rodenburg, J., Saito, K., Oikeh, S., Futakuchi, K., Gumedzoe, D.,
Huat, J., 2011 Cultivar and weeding effects on weeds and rice yields in a
degraded upland environment of the coastal Savanna. Weed Tech. 25(3),
322–329.

Waddington, S.R., Li, X.Y., Dixon, J., Hyman, G., de Vicente, M.C., 2010.
Getting the focus right: production constraints for six major food crops in
Asian and African farming systems. Food Sec. 2(1), 27–48.

Wilson, P.W. 2008. ‘FEAR.2.0. A Software Package for Frontier Efficiency
Analysis with R’. Soc. Econ. Plann. Sci. 42, 247–254.

Xue, M., Harker, P.T. 1999. Overcoming the inherent dependency of DEA
efficiency scores: A bootstrap approach. Working Paper No. 99–17. Finan-
cial Institutions Center, The Wharton School, University of Pennsylvania,
Pennsylvania, USA.

Yu, C.H., 2003. Resampling methods: Concepts, applications, and justifica-
tion. Practical Assess Res. Eval. 8 (19). Available at: http://PAREonline.
net/getvn.asp?v=8&n=19.

Supporting Information

Additional supporting information may be found online in the
Supporting Information section at the end of the article.


